1 |
|
|
|
2 |
THAKKAR A , LOHIYA R . Fusion of statistical importance for feature selection in deep neural network-based intrusion detection system. Information Fusion, 2023, 90, 353- 363.
|
3 |
THAKKAR A , LOHIYA R . Attack classification using feature selection techniques: a comparative study. Journal of Ambient Intelligence and Humanized Computing, 2021, 12 (1): 1249- 1266.
|
4 |
QI Z, FEI J L, WANG J, et al. An intrusion detection feature selection method based on improved mutual information[C]//Proceedings of the 6th IEEE Information Technology, Networking, Electronic and Automation Control Conference. Washington D.C., USA: IEEE Press, 2023: 1584-1590.
|
5 |
SAH G , BANERJEE S , SINGH S . Intrusion detection system over real-time data traffic using machine learning methods with feature selection approaches. International Journal of Information Security, 2023, 22 (1): 1- 27.
|
6 |
SONGMA S , SATHUPHAN T , PAMUTHA T . Optimizing intrusion detection systems in three phases on the CSE-CIC-IDS-2018 dataset. Computers, 2023, 12 (12): 245.
|
7 |
DAOUD M , DAHMANI Y , BENDAOUD M , et al. Convolutional neural network-based high-precision and speed detection system on CIDDS-001. Data & Knowledge Engineering, 2023, 144, 102130.
|
8 |
AZIZJON M, JUMABEK A, KIM W. 1D CNN based network intrusion detection with normalization on imbalanced data[C]//Proceedings of the International Conference on Artificial Intelligence in Information and Communication (ICAⅡC). Washington D.C., USA: IEEE Press, 2020: 218-224.
|
9 |
SHARMA B , SHARMA L , LAL C , et al. Explainable artificial intelligence for intrusion detection in IoT networks: a deep learning based approach. Expert Systems with Applications, 2024, 238, 121751.
|
10 |
GAO Z, SU Y, DING Y, et al. Key technologies of anomaly detection using PCA-LSTM[C]//Proceedings of the 13th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2019). Berlin, Germany: Springer, 2020: 246-254.
|
11 |
MBOW M, KOIDE H, SAKURAI K. An intrusion detection system for imbalanced dataset based on deep learning[C]//Proceedings of the 9th International Symposium on Computing and Networking (CANDAR). Washington D.C., USA: IEEE Press, 2021: 38-47.
|
12 |
LU G Y , TIAN X X . An efficient communication intrusion detection scheme in AMI combining feature dimensionality reduction and improved LSTM. Security and Communication Networks, 2021, 2021, 6631075.
|
13 |
王振飞, 袁佩瑶, 曹中亚, 等. 面向高维不平衡数据的特征选择算法. 小型微型计算机系统, 2024, 45 (8): 1839- 1846.
|
|
WANG Z F , YUAN P Y , CAO Z Y , et al. Feature selection algorithm for high dimensional unbalanced data. Journal of Chinese Computer Systems, 2024, 45 (8): 1839- 1846.
|
14 |
HE H B, BAI Y, GARCIA E A, et al. ADASYN: adaptive synthetic sampling approach for imbalanced learning[C]//Proceedings of the IEEE International Joint Conference on Neural Networks. Washington D.C., USA: IEEE Press, 2008: 1322-1328.
|
15 |
KASONGO S M , SUN Y X . A deep learning method with wrapper based feature extraction for wireless intrusion detection system. Computers & Security, 2020, 92, 101752.
|
16 |
石磊, 张吉涛, 高宇飞, 等. 基于Transformer-BiLSTM的入侵检测. 计算机工程, 2023, 49 (3): 29- 37.
URL
|
|
SHI L , ZHANG J T , GAO Y F , et al. Intrusion detection based on Transformer-BiLSTM. Computer Engineering, 2023, 49 (3): 29- 37.
URL
|
17 |
WANG W, ZHU M, WANG J L, et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]//Proceedings of the IEEE International Conference on Intelligence and Security Informatics. Washington D.C., USA: IEEE Press, 2017: 43-48.
|
18 |
LAGHRISSI F , DOUZI S , DOUZI K , et al. Intrusion detection systems using Long Short-Term Memory (LSTM). Journal of Big Data, 2021, 8 (1): 65.
|
19 |
IMRANA Y , XIANG Y P , ALI L , et al. A bidirectional LSTM deep learning approach for intrusion detection. Expert Systems with Applications, 2021, 185, 115524.
|
20 |
SU T T , SUN H Z , ZHU J Q , et al. BAT: deep learning methods on network intrusion detection using NSL-KDD dataset. IEEE Access, 2020, 8, 29575- 29585.
|
21 |
BEDI P , GUPTA N , JINDAL V . I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems. Applied Intelligence, 2021, 51 (2): 1133- 1151.
|
22 |
ALTWAIJRY N, ALQAHTANI A, ALTURAIKI I. A deep learning approach for anomaly-based network intrusion detection[C]//Proceedings of International Conference on Big Data and Security. Berlin, Germany: Springer, 2019: 603-615.
|
23 |
AL-TURAIKI I , ALTWAIJRY N . A convolutional neural network for improved anomaly-based network intrusion detection. Big Data, 2021, 9 (3): 233- 252.
|
24 |
LIU J M , GAO Y B , HU F J . A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM. Computers & Security, 2021, 106, 102289.
|
25 |
REN H J , TANG Y H , DONG W Y , et al. DUEN: dynamic ensemble handling class imbalance in network intrusion detection. Expert Systems with Applications, 2023, 229, 120420.
|
26 |
REN K Y , YUAN S , ZHANG C , et al. CANET: a hierarchical CNN-attention model for network intrusion detection. Computer Communications, 2023, 205, 170- 181.
|
27 |
KHAN F A , GUMAEI A , DERHAB A , et al. TSDL: a two-stage deep learning model for efficient network intrusion detection. IEEE Access, 2019, 7, 30373- 30385.
|
28 |
MULYANTO, PRAKOSA S W, FAISAL M, et al. Using optimized focal loss for imbalanced dataset on network intrusion detection system[C]//Proceedings of the 95th IEEE Vehicular Technology Conference. Washington D.C., USA: IEEE Press, 2022: 1-7.
|