1 |
NOBLE W S . What is a support vector machine?. Nature Biotechnology, 2006, 24, 1565- 1567.
doi: 10.1038/nbt1206-1565
|
2 |
ALFEILAT H A A , HASSANAT A B A , LASASSMEH O , et al. Effects of distance measure choice on k-nearest neighbor classifier performance: a review. Big Data, 2019, 7 (4): 221- 248.
doi: 10.1089/big.2018.0175
|
3 |
HARRIS Z S . Distributional structure. Word, 1954, 10 (2/3): 146- 162.
|
4 |
SALTON G , WONG A , YANG C S . A vector space model for automatic indexing. Communications of the ACM, 1975, 18 (11): 613- 620.
doi: 10.1145/361219.361220
|
5 |
|
6 |
ALBAWI S, MOHAMMED T A, AL-ZAWI S. Understanding of a convolutional neural network[C]//Proceedings of the International Conference on Engineering and Technology (ICET). Washington D.C., USA: IEEE Press, 2017: 1-6.
|
7 |
MEDSKER L , JAIN L C . Recurrent neural networks: design and applications. Boca Raton, USA: CRC Press, 1999.
|
8 |
YAO L, MAO C S, LUO Y, et al. Graph convolutional networks for text classification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence and 31st Innovative Applications of Artificial Intelligence Conference and 9th AAAI Symposium on Educational Advances in Artificial Intelligence. New York, USA: ACM Press, 2019: 7370-7377.
|
9 |
HUANG L Z, MA D H, LI S J, et al. Text level graph neural network for text classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, USA: ACL Press, 2019: 3444-3450.
|
10 |
DING K Z, WANG J L, LI J D, et al. Be more with less: hypergraph attention networks for inductive text classification[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, USA: ACL Press, 2020: 4927-4936.
|
11 |
陈杰. 基于多方面特征表示与图卷积网络的短文本分类研究[D]. 合肥: 安徽大学, 2022.
|
|
CHEN J. Research on short text classification based on multifaceted feature representation and graph convolution network[D]. Hefei: Anhui University, 2022. (in Chinese)
|
12 |
|
13 |
闫佳丹, 贾彩燕. 基于双图神经网络信息融合的文本分类方法. 计算机科学, 2022, 49 (8): 230- 236.
|
|
YAN J D , JIA C Y . Text classification method based on information fusion of dual-graph neural network. Computer Science, 2022, 49 (8): 230- 236.
|
14 |
KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, USA: ACL Press, 2014: 1746-1751.
|
15 |
ZHANG X, ZHAO J B, LECUN Y, et al. Character-level convolutional networks for text classification[C]//Proceedings of the 29th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2015: 649-657.
|
16 |
LIU P F, QIU X P, HUANG X J. Recurrent neural network for text classification with multi-task learning[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 2873-2879.
|
17 |
JANG B , KIM M , HARERIMANA G , et al. Bi-LSTM model to increase accuracy in text classification: combining Word2Vec CNN and attention mechanism. Applied Sciences, 2020, 10 (17): 5841.
doi: 10.3390/app10175841
|
18 |
|
19 |
LIU X E, YOU X X, ZHANG X, et al. Tensor graph convolutional networks for text classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 8409-8416.
|
20 |
ZHANG Y F, YU X L, CUI Z Y, et al. Every document owns its structure: inductive text classification via graph neural networks[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL Press, 2020: 334-339.
|
21 |
RUIZ L , GAMA F , RIBEIRO A , et al. Gated graph sequence neural networks. IEEE Transactions on Signal Processing, 2020, 68, 6303- 6318.
doi: 10.1109/TSP.2020.3033962
|
22 |
FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 3558-3565.
|
23 |
JELODAR H , WANG Y L , YUAN C , et al. Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 2019, 78 (11): 15169- 15211.
doi: 10.1007/s11042-018-6894-4
|
24 |
杨世刚, 刘勇国. 融合语料库特征与图注意力网络的短文本分类方法. 计算机应用, 2022, 42 (5): 1324- 1329.
|
|
YANG S G , LIU Y G . Short text classification method by fusing corpus features and graph attention network. Journal of Computer Applications, 2022, 42 (5): 1324- 1329.
|
25 |
YANG T C , HU L M , SHI C , et al. HGAT: heterogeneous graph attention networks for semi-supervised short text classification. ACM Transactions on Information Systems, 2021, 39 (3): 1- 29.
|
26 |
DAI Y , SHOU L J , GONG M , et al. Graph fusion network for text classification. Knowledge-Based Systems, 2022, 236, 107659.
doi: 10.1016/j.knosys.2021.107659
|
27 |
ZHANG C, ZHU H, PENG X, et al. Hierarchical information matters: text classification via tree based graph neural network[C]//Proceedings of the 29th International Conference on Computational Linguistics. Stroudsburg, USA: ACL Press, 2022: 950-959.
|
28 |
HUANG Y H, CHEN Y H, CHEN Y S. ConTextING: granting document-wise contextual embeddings to graph neural networks for inductive text classification C]//Proceedings of the 29th International Conference on Computational Linguistics. Stroudsburg, USA: ACL Press, 2022: 1163-1168.
|
29 |
KENTON J D M W C, TOUTANOVA L K. BERT: pre-training of deep bidirectional Transformers for language understanding[C]//Proceedings of NAACL-HLT'19. Stroudsburg, USA: ACL Press, 2019: 4171-4186.
|
30 |
VASWANI A, SHAZEER N, PARMERN, et al. Attention is all you need[C]//Proceedings of the 31th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 6000-6010.
|
31 |
PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, USA: ACL Press, 2014: 1532-1543.
|
32 |
ZHANG M X , LI X M , YUE S B , et al. An empirical study of TextRank for keyword extraction. IEEE Access, 2020, 8, 178849- 178858.
doi: 10.1109/ACCESS.2020.3027567
|
33 |
WANG K Z, HAN S C, POON J. InducT-GCN: inductive graph convolutional networks for text classification[C]//Proceedings of the 26th International Conference on Pattern Recognition (ICPR). Washington D.C., USA: IEEE Press, 2022: 1243-1249.
|
34 |
LIN C H, HE Y L, LIN C H, et al. Joint sentiment/topic model for sentiment analysis[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York, USA: ACM Press, 2009: 375-384.
|
35 |
ZHU H, KONIUSZ P. Simple spectral graph convolution[C]//Proceedings of the International Conference on Learning Representation. New York, USA: ACM Press, 2021: 151-163.
|