1 |
WANG H C, KATZSCHMANN R K, TENG S, et al. Enabling independent navigation for visually impaired people through a wearable vision-based feedback system[C]//Proceedings of 2017 IEEE International Conference on Robotics and Automation (ICRA). Washington D. C., USA: IEEE Press, 2017: 6533-6540.
|
2 |
范润泽, 刘宇红, 张荣芬, 等. 基于多尺度注意力机制的道路场景语义分割模型. 计算机工程, 2023, 49 (2): 288- 294.
doi: 10.19678/j.issn.1000-3428.0063257
|
|
FAN R Z , LIU Y H , ZHANG R F , et al. Road scene semantic segmentation model based on multi-scale attention mechanism. Computer Engineering, 2023, 49 (2): 288- 294.
doi: 10.19678/j.issn.1000-3428.0063257
|
3 |
刘晓蓉, 李晓霞, 秦昌辉. 融合多尺度对比池化特征的行人重识别方法. 计算机工程, 2022, 48 (4): 292- 298.
doi: 10.19678/j.issn.1000-3428.0061508
|
|
LIU X R , LI X X , QIN C H . Pedestrian re-identification method with multi-scale contrast pooling feature. Computer Engineering, 2022, 48 (4): 292- 298.
doi: 10.19678/j.issn.1000-3428.0061508
|
4 |
李柯泉, 陈燕, 刘佳晨, 等. 基于深度学习的目标检测算法综述. 计算机工程, 2022, 48 (7): 10- 19.
doi: 10.19678/j.issn.1000-3428.0062725
|
|
LI K Q , CHEN Y , LIU J C , et al. Survey of deep learning-based object detection algorithms. Computer Engineering, 2022, 48 (7): 10- 19.
doi: 10.19678/j.issn.1000-3428.0062725
|
5 |
BADRINARAYANAN V , KENDALL A , CIPOLLA R . SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495.
|
6 |
XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[EB/OL]. [2024-03-10]. https://arxiv.org/abs/2105.15203.
|
7 |
XU J, DE MELLO S, LIU S, et al. GroupViT: semantic segmentation emerges from text supervision[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 18134-18144.
|
8 |
SHA Y , MENG W , LUO G , et al. MetDIT: transforming and analyzing clinical metabolomics data with convolutional neural networks. Analytical Chemistry, 2024, 96 (7): 2949- 2957.
|
9 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
10 |
WANG J , SUN K , CHENG T , et al. Deep high-resolution representation learning for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (10): 3349- 3364.
|
11 |
|
12 |
YU C, WANG J, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2018: 325-341.
|
13 |
XU J, XIONG Z, BHATTACHARYYA S P. PIDNet: a real-time semantic segmentation network inspired by PID controllers[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 19529-19539.
|
14 |
GUO M H, LU C Z, HOU Q, et al. SegNeXt: rethinking convolutional attention design for semantic segmentation[EB/OL]. (2022-09-18)[2024-03-10]. https://arxiv.org/abs/2209.08575.
|
15 |
CORDTS M, OMRAN M, RAMOS S, et al. The Cityscapes dataset for semantic urban scene understanding[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 3213-3223.
|
16 |
BROSTOW G J , FAUQUEUR J , CIPOLLA R . Semantic object classes in video: a high-definition ground truth database. Pattern Recognition Letters, 2009, 30 (2): 88- 97.
|
17 |
KAYUKAWA S, ISHIHARA T, TAKAGI H, et al. BlindPilot: a robotic local navigation system that leads blind people to a landmark object[C]//Proceedings of CHI EA'20: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. New York, USA: ACM, 2020: 1-9.
|
18 |
KAYUKAWA S, HIGUCHI K, GUERREIRO J, et al. BBeep: a sonic collision avoidance system for blind travellers and nearby pedestrians[C]//Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. New York, USA: ACM, 2019: 1-12.
|
19 |
SIAGIAN C, CHANG C K, ITTI L, et al. Mobile robot navigation system in outdoor pedestrian environment using vision-based road recognition[C]//Proceedings of 2013 IEEE International Conference on Robotics and Automation. Washington D. C., USA: IEEE Press, 2013: 564-571.
|
20 |
ZHANG J , YANG K , CONSTANTINESCU A , et al. Trans4Trans: efficient transformer for transparent object and semantic scene segmentation in real-world navigation assistance. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (10): 19173- 19186.
|
21 |
YANG K , WANG K , BERGASA L M , et al. Unifying terrain awareness for the visually impaired through real-time semantic segmentation. Sensors, 2018, 18 (5): 1506.
|
22 |
AL-HALAH Z, RAMAKRISHNAN S K, GRAUMAN K. Zero experience required: plug & play modular transfer learning for semantic visual navigation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 17031-17041.
|
23 |
QIAO Y, QI Y, HONG Y, et al. HOP: history-and-order aware pre-training for vision-and-language navigation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 15418-15427.
|
24 |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2018: 801-818.
|
25 |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2881-2890.
|
26 |
ZHENG S, LU J, ZHAO H, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 6877-6886.
|
27 |
LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022.
|
28 |
CHENG B, MISRA I, SCHWING A G, et al. Masked-attention mask transformer for universal image segmentation[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 1290-1299.
|
29 |
CAO H, WANG Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[EB/OL]. (2021-04-12)[2024-03-10]. https://arxiv.org/abs/2105.05537.
|
30 |
SHA Y, MENG W, ZHAI X, et al. Accurate facial landmark detector via multi-scale transformer[C]//Proceedings of Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Berlin, Germany: Springer, 2023: 278-290.
|
31 |
PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation[EB/OL]. (2016-06-07)[2024-03-10]. https://arxiv.org/abs/1606.02147.
|
32 |
MEHTA S , HAJISHIRZI H , RASTEGARI M . DiCENet: dimension-wise convolutions for efficient networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44 (5): 2416- 2425.
|
33 |
LI H, XIONG P, FAN H, et al. DFANet: deep feature aggregation for real-time semantic segmentation[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 9522-9531.
|
34 |
CHEN W, GONG X, LIU X, et al. FasterSeg: searching for faster real-time semantic segmentation[EB/OL]. (2020-02-16)[2024-03-10]. https://arxiv.org/abs/1912.10917.
|
35 |
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4510-4520.
|
36 |
ZHAO H, QI X, SHEN X, et al. ICNet for real-time semantic segmentation on high-resolution images[C]// Proceedings of the European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2018: 405-420.
|
37 |
MEHTA S, RASTEGARI M, SHAPIRO L, et al. ESPNetV2: a light-weight, power efficient, and general purpose convolutional neural network[EB/OL]. (2019-03-30)[2024-03-10]. https://arxiv.org/abs/1811.11431.
|
38 |
YU C , GAO C , WANG J , et al. BiSeNet V2: bilateral network with guided aggregation for real-time semantic segmentation. International Journal of Computer Vision, 2021, 129 (11): 3051- 3068.
|
39 |
WANG J, GOU C, WU Q, et al. RTFormer: efficient design for real-time semantic segmentation with transformer[EB/OL]. (2022-10-13)[2024-03-10]. https://arxiv.org/abs/2210.07124.
|
40 |
WANG J, LONG X, CHEN G, et al. U-HRNet: delving into improving semantic representation of high resolution network for dense prediction[EB/OL]. (2022-10-13)[2024-03-10]. https://arxiv.org/abs/2210.07140.
|
41 |
TANG S, SUN T, PENG J, et al. PP-MobileSeg: explore the fast and accurate semantic segmentation model on mobile devices[EB/OL]. (2023-04-11)[2024-03-10]. https://arxiv.org/abs/2304.05152.
|
42 |
SHA Y. Efficient facial landmark detector by knowledge distillation[C]//Proceedings of 2021 IEEE International Conference on Automatic Face and Gesture Recognition (FG). Washington D. C., USA: IEEE Press, 2023: 1-8.
|
43 |
SHA Y , ZHAI X , LI J , et al. A novel lightweight deep learning fall detection system based on Global-Local attention and channel feature augmentation. Interdisciplinary Nursing Research, 2023, 2, 68- 75.
|