| 1 |
YE M , SHEN J B , LIN G J , et al. Deep learning for person re-identification: a survey and outlook. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44 (6): 2872- 2893.
|
| 2 |
郝阿香, 贾郭军. 结合注意力与批特征擦除的行人重识别模型. 计算机工程, 2022, 48 (7): 270-276, 306.
doi: 10.19678/j.issn.1000-3428.0062020
|
|
HAO A X , JIA G J . Person re-identification model combining attention and batch feature erasure. Computer Engineering, 2022, 48 (7): 270-276, 306.
doi: 10.19678/j.issn.1000-3428.0062020
|
| 3 |
朱锦雷, 李艳凤, 陈后金, 等. 近邻优化跨域无监督行人重识别算法. 中国图象图形学报, 2023, 28 (11): 3471- 3484.
|
|
ZHU J L , LI Y F , CHEN H J , et al. Cross-domain unsupervised Re-ID algorithm based on neighbor adversarial and consistency loss. Journal of Image and Graphics, 2023, 28 (11): 3471- 3484.
|
| 4 |
贾洁茹, 张硕蕊, 钱宇华, 等. 基于伪标签正则化损失的无监督行人重识别. 电子学报, 2024, 52 (5): 1743- 1758.
|
|
JIA J R , ZHANG S R , QIAN Y H , et al. Unsupervised person re-identification with pseudo label regularization loss. Acta Electronica Sinica, 2024, 52 (5): 1743- 1758.
|
| 5 |
LAN L , TENG X , ZHANG J , et al. Learning to purification for unsupervised person re-identification. IEEE Transactions Image Processing, 2023, 32, 3338- 3353.
doi: 10.1109/TIP.2023.3278860
|
| 6 |
GE Y X, CHEN D P, LI H S. Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification[EB/OL]. [2024-05-10]. https://arxiv.org/abs/2001.01526v2.
|
| 7 |
ZHOU Q Q , ZHONG B N , LAN X Y , et al. Fine-grained spatial alignment model for person re-identification with focal triplet loss. IEEE Transactions on Image Processing, 2020, 29, 7578- 7589.
doi: 10.1109/TIP.2020.3004267
|
| 8 |
DAI Y , LIU J , BAI Y , et al. Dual-refinement: joint label and feature refinement for unsupervised domain adaptive person re-identification. IEEE Transactions on Image Processing, 2021, 30, 7815- 7829.
doi: 10.1109/TIP.2021.3104169
|
| 9 |
CHO Y, KIM W J, HONG S, et al. Part-based pseudo label refinement for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 7308-7318.
|
| 10 |
GE Y X, CHEN D P, ZHU F, et al. Self-paced contrastive learning with hybrid memory for domain adaptive object Re-ID[C]//Proceedings of the Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2020: 11309-11321.
|
| 11 |
DAI Z Z, WANG G Y, YUAN W H, et al. Cluster contrast for Unsupervised person re-identification[C]//Proceedings of the ACCV'22. Berlin, Germany: Springer, 2023: 319-337.
|
| 12 |
LI P N, WU K Y, HUANG W L, et al. Camera-aware label refinement for unsupervised person re-identification[EB/OL]. [2024-05-10]. https://arxiv.org/abs/2403.16450.
|
| 13 |
ZHANG G Q , ZHANG H W , LIN W S , et al. Camera contrast learning for unsupervised person re-identification. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (8): 4096- 4107.
doi: 10.1109/TCSVT.2023.3240001
|
| 14 |
毕方明, 王为奎, 陈龙. 基于空间密度的群以噪声发现聚类算法研究. 南京大学学报(自然科学), 2012, 48 (4): 491- 498.
|
|
BI F M , WANG W K , LONG C . DBSCAN: density-based spatial clustering of applications with noise. Journal of Nanjing University(Natural Sciences), 2012, 48 (4): 491- 498.
|
| 15 |
WU F Z , WU J S , KONG Y Y , et al. Multiscale low-frequency memory network for improved feature extraction in convolutional neural networks. Artificial Intelligence, 2024, 38 (6): 5967- 5975.
|
| 16 |
HUANG X, BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, USA: IEEE Press, 2017: 1501-1510.
|
| 17 |
XUAN S , ZHANG S . Intra-inter domain similarity for unsupervised person re-identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (3): 1711- 1726.
doi: 10.1109/TPAMI.2022.3163451
|
| 18 |
ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 1116-1124.
|
| 19 |
ZHENG Z D, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 3754-3762.
|
| 20 |
WEI L H, ZHANG S L, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 79-88.
|
| 21 |
ZHONG Z, ZHENG L, CAO D L, et al. Re-ranking person re-identification with k-reciprocal encoding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 1318-1327.
|
| 22 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 248-255.
|
| 23 |
|
| 24 |
FU D P, CHEN D D, YANG H, et al. Large-scale pre-training for person re-identification with noisy labels[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 2476-2486.
|
| 25 |
WANG W , ZHAO F , LIAO S , et al. Attentive WaveBlock: complementarity-enhanced mutual networks for unsupervised domain adaptation in person re-identification and beyond. IEEE Transactions on Image Processing, 2022, 31, 1532- 1544.
doi: 10.1109/TIP.2022.3140614
|
| 26 |
HE T , SHEN L Q , GUO Y C , et al. SECRET: self-consistent pseudo label refinement for unsupervised domain adaptive person re-identification. Artificial Intelligence, 2022, 36 (1): 879- 887.
|
| 27 |
WANG M L , LAI B S , HUANG J Q , et al. Camera-aware proxies for unsupervised person re-identification. Artificial Intelligence, 2021, 35 (4): 2764- 2772.
|
| 28 |
CHEN H, LAGADEC B, BREMOND F. ICE: inter-instance contrastive encoding for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 14960-14969.
|
| 29 |
JI H , WANG L , ZHOU S P , et al. Transfer easy to hard: adversarial contrastive feature learning for unsupervised person re-identification. Pattern Recognition, 2024, 145, 109973.
doi: 10.1016/j.patcog.2023.109973
|
| 30 |
ZHENG Y, TANG S X, TENG G L, et al. Online pseudo label generation by hierarchical cluster dynamics for adaptive person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 8371-8381.
|
| 31 |
JIN X, HE T Y, SHEN X, et al. Meta clustering learning for large-scale unsupervised person re-identification[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York, USA: ACM Press, 2022: 2163-2172.
|
| 32 |
CHENG D , ZHOU J Y , WANG N N , et al. Hybrid dynamic contrast and probability distillation for unsupervised person re-identification. IEEE Transactions on Image Processing, 2022, 31, 3334- 3346.
doi: 10.1109/TIP.2022.3169693
|
| 33 |
ZHANG X Y, LI D D, WANG Z G, et al. Implicit sample extension for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 7369-7378.
|
| 34 |
HAN X , YU X , LI G , et al. Rethinking sampling strategies for unsupervised person re-identification. IEEE Transactions on Image Processin, 2023, 32, 29- 42.
doi: 10.1109/TIP.2022.3224325
|
| 35 |
YIN J , ZHANG X , MA Z , et al. A real-time memory updating strategy for unsupervised person re-identification. IEEE Transactions on Image Processin, 2023, 32, 2309- 2321.
doi: 10.1109/TIP.2023.3266166
|