作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2026, Vol. 52 ›› Issue (1): 217-227. doi: 10.19678/j.issn.1000-3428.0070010

• 计算机视觉与图形图像处理 • 上一篇    下一篇

融合空频信息的多粒度师生网络无监督行人重识别

陈玉敏1,2, 车进1,2,*(), 杨莹莹1,2   

  1. 1. 宁夏大学电子与电气工程学院, 宁夏 银川 750021
    2. 宁夏大学宁夏沙漠信息智能感知重点实验室, 宁夏 银川 750021
  • 收稿日期:2024-06-16 修回日期:2024-08-06 出版日期:2026-01-15 发布日期:2024-09-23
  • 通讯作者: 车进
  • 作者简介:

    陈玉敏, 女, 硕士研究生, 主研方向为行人重识别

    车进(通信作者), 教授、博士

    杨莹莹, 硕士研究生

  • 基金资助:
    国家自然科学基金(62366042)

Unsupervised Person Re-Identification for Multigrained Teacher-Student Networks Incorporating Spatial Frequency Information

CHEN Yumin1,2, CHE Jin1,2,*(), YANG Yingying1,2   

  1. 1. School of Electronic and Electrical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
    2. Ningxia Key Laboratory of Intelligent Sensing for Desert Information, Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2024-06-16 Revised:2024-08-06 Online:2026-01-15 Published:2024-09-23
  • Contact: CHE Jin

摘要:

无监督行人重识别旨在挖掘无标注数据的判别性表示用于行人检索任务。基于伪标签进行训练的无监督行人重识别方法目前已经取得了瞩目的进展。然而在训练过程中引入的噪声和信息利用不完全问题限制了该任务的进一步发展。提出一种融合浅层空频信息的多粒度师生网络。首先, 同时考虑全局和局部特征并将其集成到聚类对比学习中, 丰富特征表示, 利用训练好的教师模型指导学生模型快速收敛, 减少噪声伪标签的干扰; 其次, 设计一个新颖的空频信息交互模块, 利用网络加深过程中丢失的浅层空间域、频域有用信息; 此外, 在学生网络的训练过程中采用一种重利用策略, 将以往方法中直接丢弃的部分未聚类实例作为难样本重新利用。在Market1501、DukeMTMC-reID和MSMT17 3个大型数据集上的均值平均精度(mAP)结果分别达到87.5%、74.8%和41.9%, 证明了该方法的优越性。

关键词: 无监督行人重识别, 伪标签噪声, 多粒度特征, 师生网络, 空频信息

Abstract:

Unsupervised person Re-Identification (Re-ID) aims to mine discriminative representations from unlabeled data for person retrieval. Currently, unsupervised person Re-ID methods based on pseudo-labels have achieved remarkable progress. However, the noise introduced during the training process and incomplete utilization of information limit its further development. This paper proposes a multigrained teacher-student network that integrates shallow spatial and frequency information. First, it simultaneously considers global and local features and integrates them into clustering-based contrastive learning, enriching feature representation. A well-trained teacher model is used to guide the student model to converge quickly, thereby reducing the interference of noisy pseudo-labels. Second, a novel spatial frequency interaction module that utilizes useful information in the shallow spatial and frequency domains that is lost during the network deepening process is proposed. Additionally, a recycling strategy is adopted in the training process of the student network, in which some unclustered instances that are directly discarded in the previous methods are recycled as hard samples. The mean Average Precision (mAP) results for three large datasets, Market1501, DukeMTMC-reID, and MSMT17, reach 87.5%, 74.8%, and 41.9%, respectively, proving the superiority of the proposed method.

Key words: unsupervised person Re-Identification (Re-ID), pseudo-label noise, multi-grained features, teacher-student network, spatial frequency information