| 1 |
单玉刚, 胡卫国. 尺度方向自适应视觉目标跟踪方法综述. 计算机工程与应用, 2020, 56 (9): 13- 23.
|
|
SHAN Y G , HU W G . Review of visual object tracking algorithms of adaptive direction and scale. Computer Engineering and Applications, 2020, 56 (9): 13- 23.
|
| 2 |
张海涛, 秦鹏程. 基于GMS与FPME的视频目标跟踪方法. 计算机工程, 2021, 47 (7): 226- 231.
doi: 10.19678/j.issn.1000-3428.0058428
|
|
ZHANG H T , QIN P C . Video target tracking method based on GMS and FPME. Computer Engineering, 2021, 47 (7): 226- 231.
doi: 10.19678/j.issn.1000-3428.0058428
|
| 3 |
YANG J C , XU R , CUI J , et al. Robust visual tracking using adaptive local appearance model for smart transportation. Multimedia Tools and Applications, 2016, 75 (24): 17487- 17500.
doi: 10.1007/s11042-016-3285-6
|
| 4 |
LI S Y , YEUNG D Y . Visual object tracking for unmanned aerial vehicles: a benchmark and new motion models. Artificial Intelligence, 2017, 31 (1): 358- 366.
|
| 5 |
李雪松, 张锲石, 宋呈群, 等. 自动驾驶场景下的轨迹预测技术综述. 计算机工程, 2023, 49 (5): 1- 11.
doi: 10.19678/j.issn.1000-3428.0065627
|
|
LI X S , ZHANG Q S , SONG C Q , et al. Review of trajectory prediction technology in autonomous driving scenes. Computer Engineering, 2023, 49 (5): 1- 11.
doi: 10.19678/j.issn.1000-3428.0065627
|
| 6 |
MAKHMUTOVA A, ANIKIN I V, DAGAEVA M. Object tracking method for videomonitoring in intelligent transport systems[C]//Proceedings of the International Russian Automation Conference. Washington D. C., USA: IEEE Press, 2020: 535-540.
|
| 7 |
SONG Y B, MA C, GONG L J, et al. CREST: convolutional residual learning for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2555-2564.
|
| 8 |
BOLME D, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE Press, 2010: 2544-2550.
|
| 9 |
BELHUMEUR P N , HESPANHA J P , KRIEGMAN D J . Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7): 711- 720.
doi: 10.1109/34.598228
|
| 10 |
厍向阳, 罗佳琪, 任海青, 等. 基于稀疏表示的相关滤波目标跟踪算法. 计算机工程与应用, 2023, 59 (11): 71- 79.
|
|
SHE X Y , LUO J Q , REN H Q , et al. Correlation filter for object tracking method based on spare representation. Computer Engineering and Applications, 2023, 59 (11): 71- 79.
|
| 11 |
谢余庆, 黄旭东, 胡丽莹. 基于正则化正交非负矩阵分解的旋转目标检测方法. 福建师范大学学报(自然科学版), 2024, 40 (1): 106- 115.
|
|
XIE Y Q , HUANG X D , HU L Y . Rotating target detection method based on regularized orthogonal nonnegative matrix factorization. Journal of Fujian Normal University (Natural Science Edition), 2024, 40 (1): 106- 115.
|
| 12 |
HENRIQUES J F , CASEIRO R , MARTINS P , et al. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 583- 596.
doi: 10.1109/TPAMI.2014.2345390
|
| 13 |
KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]// Proceedings of the ICML Deep Learning Workshop. Washington D. C., USA: IEEE Press, 2015: 211-223.
|
| 14 |
梁浩, 刘克俭, 刘康, 等. 引入再检测机制的孪生神经网络目标跟踪. 光学精密工程, 2019, 27 (7): 1621.
|
|
LIANG H , LIU K J , LIU K , et al. Siamese network tracking with redetection mechanism. Optics and Precision Engineering, 2019, 27 (7): 1621.
|
| 15 |
NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 4293-4302.
|
| 16 |
BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 850-865.
|
| 17 |
LI B, YAN J J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8971-8980.
|
| 18 |
LI B, WU W, WANG Q, et al. SiamRPN++: evolution of Siamese visual tracking with very deep networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 4282-4291.
|
| 19 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 770-778.
|
| 20 |
WEI B B , CHEN H Y , DING Q H , et al. SiamOAN: Siamese object-aware network for real-time target tracking. Neurocomputing, 2022, 471, 161- 174.
doi: 10.1016/j.neucom.2021.10.112
|
| 21 |
WEI B B , CHEN H Y , DING Q H , et al. SiamAGN: Siamese attention-guided network for visual tracking. Neurocomputing, 2022, 324
|
| 22 |
BAO J H , CHEN K Q , SUN X , et al. SiamTHN: Siamese target highlight network for visual tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 35 (7): 7061- 7074.
|
| 23 |
|
| 24 |
|
| 25 |
CHEN H , WU C , DU B , et al. Change detection in multisource VHR images via deep Siamese convolutional multiple-layers recurrent neural network. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58 (4): 2848- 2864.
|
| 26 |
WU Z H , PAN S R , CHEN F W , et al. A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32 (1): 4- 24.
|
| 27 |
CHEN X, YAN B, ZHU J, et al. Transformer tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 8126-8135.
|
| 28 |
GAO S Y, ZHOU C L, MA C, et al. AiATrack: attention in attention for transformer visual tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 146-164.
|
| 29 |
BORSUK V, VEI R, KUPYN O, et al. FEAR: fast, efficient, accurate and robust visual tracker[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 644-663.
|
| 30 |
BLATTER P, KANAKIS M, DANELLJAN M, et al. Efficient visual tracking with exemplar transformers[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2023: 1571-1581.
|
| 31 |
WEI Q, ZENG B, LIU J, et al. LiteTrack: layer pruning with asynchronous feature extraction for lightweight and efficient visual tracking[EB/OL]. [2024-01-03]. https://arxiv.org//pdf/2309.09249.
|
| 32 |
HE Q B , SUN X , YAN Z Y , et al. Multi-object tracking in satellite videos with graph-based multitask modeling. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1423- 1431.
|
| 33 |
PARMIGGIANI A , LIU D , PSOTA E , et al. Don't get lost in the crowd: graph convolutional network for online animal tracking in dense groups. Computers and Electronics in Agriculture, 2023, 212, 108038.
doi: 10.1016/j.compag.2023.108038
|
| 34 |
LIN J , LI S Y , YANG X , et al. CS-ViG-UNet: infrared small and dim target detection based on cycle shift vision graph convolution network. Expert Systems with Applications, 2024, 254, 124385.
doi: 10.1016/j.eswa.2024.124385
|
| 35 |
DU Y H , YAN Y , CHEN S , et al. Object-adaptive LSTM network for real-time visual tracking with adversarial data augmentation. Neurocomputing, 2020, 384, 67- 83.
doi: 10.1016/j.neucom.2019.12.022
|
| 36 |
JAIN M , SUBRAMANYAM A V , DENMAN S , et al. LSTM guided ensemble correlation filter tracking with appearance model pool. Computer Vision and Image Understanding, 2020, 195, 102935.
doi: 10.1016/j.cviu.2020.102935
|
| 37 |
|
| 38 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13713-13722.
|
| 39 |
HUANG L H , ZHAO X , HUANG K Q . GOT-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43 (5): 1562- 1577.
|
| 40 |
WU Y , LIM J , YANG M H . Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1834- 1848.
doi: 10.1109/TPAMI.2014.2388226
|
| 41 |
KRISTAN M, LEONARDIS A, MATAS J, et al. The visual object tracking VOT2016 challenge results[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 777-823.
|
| 42 |
KRISTAN M, LEONARDIS A, MATAS J, et al. The sixth visual object tracking VOT2018 challenge results[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2019: 44-53.
|
| 43 |
LI Y, ZHU J K. A scale adaptive kernel correlation filter tracker with feature integration[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2015: 254-265.
|
| 44 |
DANELLJAN M, HAGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 4310-4318.
|
| 45 |
ZHANG J M, MA S G, SCLAROFF S. MEEM: robust tracking via multiple experts using entropy minimization[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 188-203.
|
| 46 |
DANELLJAN M, HÄGER G, SHAHBAZ KHAN F, et al. Accurate scale estimation for robust visual tracking[C]//Proceedings of the British Machine Vision Conference. Washington D. C., USA: IEEE Press, 2014: 1-5.
|
| 47 |
BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: complementary learners for real-time tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 1401-1409.
|
| 48 |
DONG X P, SHEN J B. Triplet loss in siamese network for object tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 472-488.
|
| 49 |
SHEN Z L, DAI Y C, RAO Z B. CFNet: cascade and fused cost volume for robust stereo matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE Press, 2021: 13906-13915.
|
| 50 |
VOJIR T , NOSKOVA J , MATAS J . Robust scale-adaptive mean-shift for tracking. Pattern Recognition Letters, 2014, 49, 250- 258.
doi: 10.1016/j.patrec.2014.03.025
|
| 51 |
DANELLJAN M , HAGER G , KHAN F S , et al. Discriminative scale space tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 39 (8): 1561- 1575.
|
| 52 |
MA C, HUANG J B, YANG X K, et al. Hierarchical convolutional features for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 3074-3082.
|
| 53 |
DANELLJAN M, ROBINSON A, SHAHBAZ KHAN F, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 472-488.
|
| 54 |
CUI Y T, JIANG C, WANG L M, et al. MixFormer: end-to-end tracking with iterative mixed attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 13608-13618.
|
| 55 |
CAI Y D, LIU J, TANG J, et al. Robust object modeling for visual tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2023: 9589-9600.
|
| 56 |
|