| 1 |
杨睿, 胡心如, 黄卓超, 等. 深度网络生成式伪造人脸检测方法研究综述. 计算机辅助设计与图形学学报, 2024, 30 (10): 1491- 1510.
|
|
YANG R , HU X R , HUANG Z C , et al. Review of deep network generative fake face detection methods. Journal of Computer-Aided Design & Computer Graphics, 2024, 36 (10): 1491- 1510.
|
| 2 |
祝恺蔓, 徐文博, 卢伟, 等. 多关键帧特征交互的人脸篡改视频检测. 中国图象图形学报, 2022, 27 (1): 188- 202.
|
|
ZHU K M , XU W B , LU W , et al. DeepFake video detection with feature interaction amongst key frames. Journal of Image and Graphics, 2022, 27 (1): 188- 202.
|
| 3 |
TOLOSANA R , VERA-RODRIGUEZ R , FIERREZ J , et al. DeepFakes and beyond: a survey of face manipulation and fake detection. Information Fusion, 2020, 64, 131- 148.
doi: 10.1016/j.inffus.2020.06.014
|
| 4 |
GUPTA P, CHUGH K, DHALL A, et al. The eyes know it: FakeET—an eye-tracking database to understand DeepFake perception[C]//Proceedings of the 2020 International Conference on Multimodal Interaction. New York, USA: ACM Press, 2020: 519-527.
|
| 5 |
QI H, GUO Q, XU J F, et al. DeepRhythm: exposing DeepFakes with attentional visual heartbeat rhythms[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM Press, 2020: 4318-4327.
|
| 6 |
ROSSLER A, COZZOLINO D, VERDOLIVA L, et al. FaceForensics++: learning to detect manipulated facial images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 1-11.
|
| 7 |
ZHAO H Q, WEI T Y, ZHOU W B, et al. Multi-attentional DeepFake detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 2185-2194.
|
| 8 |
|
| 9 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of ECCV'18. Berlin, Germany: Springer, 2018: 3-19.
|
| 10 |
QIN Z Q, ZHANG P Y, WU F, et al. FcaNet: frequency channel attention networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 763-772.
|
| 11 |
QIAN Y Y , YIN G J , SHENG L , et al. Thinking in frequency: face forgery detection by mining frequency-aware clues. Berlin, Germany: Springer, 2020.
|
| 12 |
LIANG Y F , WANG M M , JIN Y N , et al. Hierarchical supervisions with two-stream network for DeepFake detection. Pattern Recognition Letters, 2023, 172, 121- 127.
doi: 10.1016/j.patrec.2023.05.029
|
| 13 |
NGUYEN H H, YAMAGISHI J, ECHIZEN I. Capsule-forensics: using capsule networks to detect forged images and videos[C]//Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C., USA: IEEE Press, 2019: 2307-2311.
|
| 14 |
DING X L, ZHU W J, ZHANG D Y. DeepFake videos detection via spatiotemporal inconsistency learning and interactive fusion[C]//Proceedings of the 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). Washington D.C., USA: IEEE Press, 2022: 425-433.
|
| 15 |
GAO J , XIA Z Q , MARCIALIS G L , et al. DeepFake detection based on high-frequency enhancement network for highly compressed content. Expert Systems with Applications, 2024, 249, 123732.
doi: 10.1016/j.eswa.2024.123732
|
| 16 |
WANG B , WU X H , WANG F , et al. Spatial-frequency feature fusion based DeepFake detection through knowledge distillation. Engineering Applications of Artificial Intelligence, 2024, 133, 108341.
doi: 10.1016/j.engappai.2024.108341
|
| 17 |
WANG B , HUANG L Q , HUANG T Q , et al. Two-stream Xception structure based on feature fusion for DeepFake detection. International Journal of Computational Intelligence Systems, 2023, 16 (1): 134.
doi: 10.1007/s44196-023-00312-8
|
| 18 |
AMIN M A , HU Y J , LI C T , et al. DeepFake detection based on cross-domain local characteristic analysis with multi-domain Transformer. Alexandria Engineering Journal, 2024, 91, 592- 609.
doi: 10.1016/j.aej.2024.02.035
|
| 19 |
JIN X , WU N , JIANG Q , et al. A dual descriptor combined with frequency domain reconstruction learning for face forgery detection in DeepFake videos. Forensic Science International: Digital Investigation, 2024, 49, 301747.
doi: 10.1016/j.fsidi.2024.301747
|
| 20 |
BAYAR B , STAMM M C . Constrained convolutional neural networks: a new approach towards general purpose image manipulation detection. IEEE Transactions on Information Forensics and Security, 2018, 13 (11): 2691- 2706.
doi: 10.1109/TIFS.2018.2825953
|
| 21 |
GUO Z Q , WANG L J , YANG W Z , et al. LDFnet: lightweight dynamic fusion network for face forgery detection by integrating local artifacts and global texture information. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (2): 1255- 1265.
doi: 10.1109/TCSVT.2023.3289147
|
| 22 |
DONG C B , CHEN X R , HU R H , et al. MVSS-Net: multi-view multi-scale supervised networks for image manipulation detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (3): 3539- 3553.
doi: 10.1109/TPAMI.2022.3180556
|
| 23 |
GUO Z Q , JIA Z H , WANG L J , et al. Constructing new backbone networks via space-frequency interactive convolution for DeepFake detection. IEEE Transactions on Information Forensics and Security, 2023, 19, 401- 413.
|
| 24 |
COCCOMINI D A , MESSINA N , GENNARO C , et al. Combining EfficientNet and vision Transformers for video DeepFake detection. Berlin, Germany: Springer, 2022.
|
| 25 |
DONG F K , ZOU X Q , WANG J H , et al. Contrastive learning-based general DeepFake detection with multi-scale RGB frequency clues. Journal of King Saud University (Computer and Information Sciences), 2023, 35 (4): 90- 99.
doi: 10.1016/j.jksuci.2023.03.005
|
| 26 |
HALIASSOS A, VOUGIOUKAS K, PETRIDIS S, et al. Lips don't lie: a generalisable and robust approach to face forgery detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 5039-5049.
|
| 27 |
GU Z H, CHEN Y, YAO T P, et al. Spatiotemporal inconsistency learning for DeepFake video detection[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 3473-3481.
|
| 28 |
AFCHAR D, NOZICK V, YAMAGISHI J, et al. MesoNet: a compact facial video forgery detection network[C]//Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS). Washington D.C., USA: IEEE Press, 2018: 1-7.
|
| 29 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 1800-1807.
|
| 30 |
PANG G L , ZHANG B P , TENG Z , et al. MRE-Net: multi-rate excitation network for DeepFake video detection. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (8): 3663- 3676.
doi: 10.1109/TCSVT.2023.3239607
|
| 31 |
YANG J C , XIAO S , LI A Y , et al. MSTA-Net: forgery detection by generating manipulation trace based on multi-scale self-texture attention. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32 (7): 4854- 4866.
doi: 10.1109/TCSVT.2021.3133859
|
| 32 |
|