| 1 |
|
| 2 |
何帅, 黄襄念, 陈晓亮. 区块链跨链技术发展及应用研究综述. 西华大学学报(自然科学版), 2021, 40 (3): 1- 14.
|
|
HE S , HUANG X N , CHEN X L . The research summary of the development and application of blockchain cross-chain technology. Journal of Xihua University (Natural Science Edition), 2021, 40 (3): 1- 14.
|
| 3 |
LIU Z T, XIANG Y X, SHI J, et al. HyperService: interoperability and programmability across heterogeneous blockchains[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM, 2019: 549-566.
|
| 4 |
HAN P P , YAN Z , DING W X , et al. A survey on cross-chain technologies. Distributed Ledger Technologies: Research and Practice, 2023, 2 (2): 1- 30.
|
| 5 |
LI W K, BU J Y, LI X Q, et al. Security analysis of DeFi: vulnerabilities, attacks and advances[C]//Proceedings of 2022 IEEE International Conference on Blockchain. Washington D. C., USA: IEEE Press, 2022: 488-493.
|
| 6 |
LEE S S, MURASHKIN A, DERKA M, et al. SoK: not quite water under the bridge: review of cross-chain bridge hacks[C]//Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency. Washington D. C., USA: IEEE Press, 2023: 1-14.
|
| 7 |
ZHANG J S, GAO J B, LI Y, et al. Xscope: hunting for cross-chain bridge attacks[C]//Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. New York, USA: ACM, 2022: 1-4.
|
| 8 |
BELCHIOR R , SOMOGYVARI P , PFANNSCHMIDT J , et al. Hephaestus: modeling, analysis, and performance evaluation of cross-chain transactions. IEEE Transactions on Reliability, 2024, 73 (2): 1132- 1146.
doi: 10.1109/TR.2023.3336246
|
| 9 |
|
| 10 |
贺海武, 延安, 陈泽华. 基于区块链的智能合约技术与应用综述. 计算机研究与发展, 2018, 55 (11): 2452- 2466.
|
|
HE H W , YAN A , CHEN Z H . Survey of smart contract technology and application based on blockchain. Journal of Computer Research and Development, 2018, 55 (11): 2452- 2466.
|
| 11 |
LUU L, CHU D H, OLICKEL H, et al. Making smart contracts smarter[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM, 2016: 254-269.
|
| 12 |
KALRA S, GOEL S, DHAWAN M, et al. ZEUS: analyzing safety of smart contracts[C]//Proceedings of 2018 Network and Distributed System Security Symposium. San Diego, USA: Internet Society, 2018: 1-12.
|
| 13 |
JIANG B, LIU Y, CHAN W K. ContractFuzzer: fuzzing smart contracts for vulnerability detection[C]//Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. New York, USA: ACM, 2018: 259-269.
|
| 14 |
RODLER M, LI W, KARAME G O, et al. Sereum: protecting existing smart contracts against re-entrancy attacks[EB/OL]. [2024-08-12]. https://arxiv.org/pdf/1812.05934.
|
| 15 |
ZENG S Q, CHEN R H, ZHANG H W, et al. A high-performance smart contract vulnerability detection scheme based on BERT[C]//Proceedings of the IEEE 29th International Conference on Parallel and Distributed Systems. Washington D. C., USA: IEEE Press, 2023: 653-658.
|
| 16 |
徐瀅, 傅紫薇, 张伟, 等. 基于抽象语法树嵌入的智能合约漏洞检测技术[J/OL]. 计算机工程, 2025, 51(9): 149-157.
|
|
XU Y , FU Z W , ZHANG W , et al. Smart contract vulnerability detection technology based on abstract syntax tree embedding. Computer Engineering, 2025, 51 (9): 149- 157.
|
| 17 |
SUN W, FANG C, MIAO Y, et al. Abstract syntax tree for programming language understanding and representation: how far are we?[EB/OL]. [2024-08-12]. https://arxiv.org/pdf/2312.00413.
|
| 18 |
SACHIN S , TRIPATHI A , MAHAJAN N , et al. Sentiment analysis using gated recurrent neural networks. SN Computer Science, 2020, 1 (2): 74.
doi: 10.1007/s42979-020-0076-y
|
| 19 |
TANG X , DU Y , LAI A , et al. Deep learning-based solution for smart contract vulnerabilities detection. Scientific Reports, 2023, 13 (1): 20106.
doi: 10.1038/s41598-023-47219-0
|
| 20 |
LIAO Z Q , NAN Y H , LIANG H L , et al. SmartAxe: detecting cross-chain vulnerabilities in bridge smart contracts via fine-grained static analysis. Proceedings of the ACM on Software Engineering, 2024, 1, 249- 270.
doi: 10.1145/3643738
|
| 21 |
张冰雪, 邱鹏鹏, 卢光光, 等. FlowBridge: 支持多组织跨链业务集成的流程引擎. 小型微型计算机系统, 2025, 46 (5): 1240- 1249.
|
|
ZHANG B X , QIU P P , LU G G , et al. FlowBridge: process engine supporting multi-organizational cross-chain business integration. Journal of Chinese Computer Systems, 2025, 46 (5): 1240- 1249.
|
| 22 |
|
| 23 |
HAN X , ZHANG Z Y , DING N , et al. Pre-trained models: past, present and future. AI Open, 2021, 2, 225- 250.
doi: 10.1016/j.aiopen.2021.08.002
|
| 24 |
MURAINA I. Ideal dataset splitting ratios in machine learning algorithms: general concerns for data scientists and data analysts[C]// Proceedings of the 7th International Mardin Artuklu Scientific Research Conference. Washington D. C., USA: IEEE Press, 2022: 496-504.
|
| 25 |
KANG Y , CAI Z , TAN C W , et al. Natural language processing (NLP) in management research: a literature review. Journal of Management Analytics, 2020, 7 (2): 139- 172.
doi: 10.1080/23270012.2020.1756939
|
| 26 |
NAIDU G, ZUVA T, SIBANDA E M. A review of evaluation metrics in machine learning algorithms[M]//SILHAVY R, SILHAVY P. Artificial intelligence application in networks and systems. Berlin, Germany: Springer, 2023: 15-25.
|