1 |
DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 184-199.
|
2 |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2016: 1646-1654.
|
3 |
ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of European Conference on Computer Vision. Berlin, German: Springer, 2018: 294-310.
|
4 |
LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using swin transformer[C]//Proceedings of IEEE/CVF International Conference on Computer Vision Workshops. Washington D. C. , USA: IEEE Press, 2021: 1833-1844.
|
5 |
陈豪, 夏振平, 程成, 等. 基于Transformer-CNN的轻量级图像超分辨率重建网络. 计算机应用, 2024, 44 (1): 292- 299.
URL
|
|
CHEN H, XIA Z P, CHENG C, et al. Lightweight image super resolution reconstruction network based on Transformer-CNN. Journal of Computer Applications, 2024, 44 (1): 292- 299.
URL
|
6 |
赵小强, 程伟. 基于空间特征交叉融合的轻量级图像超分辨率重建. 兵工学报, 2024, 45 (4): 1273- 1284.
URL
|
|
ZHAO X Q, CHENG W. Lightweight image super-resolution reconstruction based on cross-fusion of spatial features. Acta Armamentarii, 2024, 45 (4): 1273- 1284.
URL
|
7 |
吕鑫栋, 李娇, 邓真楠, 等. 基于改进Transformer的结构化图像超分辨网络. 浙江大学学报(工学版), 2023, 57 (5): 865- 874,910.
URL
|
|
LÜ X D, LI J, DENG Z N, et al. Structured image super-resolution network based on improved Transformer. Journal of Zhejiang University (Engineering Science), 2023, 57 (5): 865- 874,910.
URL
|
8 |
CHU X X, ZHANG B, MA H L, et al. Fast, accurate and lightweight super-resolution with neural architecture search[C]//Proceedings of the 25th International Conference on Pattern Recogniti. Washington D. C. , USA: IEEE Press, 2021: 59-64.
|
9 |
WANG X T, DONG C, SHAN Y. RepSR: training efficient VGG-style super-resolution networks with structural re-parameterization and batch normalization[EB/OL]. [2023-05-22]. http://arxiv.org/abs/2205.05671v1.
|
10 |
LIU J, TANG J, WU G S. Residual feature distillation network for lightweight image super-resolution[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 41-55.
|
11 |
范文卓, 吴涛, 许俊平, 等. 基于多分辨率特征融合的任意尺度图像超分辨率重建. 计算机工程, 2023, 49 (9): 217- 225.
URL
|
|
FAN W Z, WU T, XU J P, et al. Super-resolution reconstruction of arbitrary scale images based on multi-resolution feature fusion. Computer Engineering, 2023, 49 (9): 217- 225.
URL
|
12 |
丁子轩, 俞雷, 张娟, 等. 基于深度残差自适应注意力网络的图像超分辨率重建. 计算机工程, 2023, 49 (5): 231- 238.
doi: 10.19678/j.issn.1000-3428.0064243
|
|
DING Z X, YU L, ZHANG J, et al. Image super-resolution reconstruction based on depth residual adaptive attention network. Computer Engineering, 2023, 49 (5): 231- 238.
doi: 10.19678/j.issn.1000-3428.0064243
|
13 |
高丹丹, 周登文, 王婉君, 等. 特征频率分组融合的轻量级图像超分辨率重建. 计算机辅助设计与图形学学报, 2023, 35 (7): 1020- 1031.
URL
|
|
GAO D D, ZHOU D W, WANG W J. Lightweight super-resolution via grouping fusion of feature frequencies. Journal of Computer-Aided Design & Computer Graphics, 2023, 35 (7): 1020- 1031.
URL
|
14 |
|
15 |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C. , USA: IEEE Press, 2017: 1132-1140.
|
16 |
AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]//Proceedings of the 15th European Conference on Computer Vision. Berlin, German: Springer, 2018: 256-272.
|
17 |
|
18 |
DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[C]// Proceedings of European Conference on Computer Vision. Berlin, German: Springer, 2016: 391-407.
|
19 |
SHI W Z, CABALLERO J, HUSZAR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2016: 1874-1883.
|
20 |
ZHAO H Y, KONG X T, HE J W, et al. Efficient image super-resolution using pixel attention[C]// Proceedings of the 16th European Conference on Computer Vision. Berlin, German: Springer, 2020: 56-72.
|
21 |
HUI Z, GAO X B, YANG Y C, et al. Lightweight image super-resolution with information multi-distillation network[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York, USA: ACM Press, 2019: 2024-2032.
|
22 |
DU Z C, LIU D, LIU J, et al. Fast and memory-efficient network towards efficient image super-resolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C. , USA: IEEE Press, 2022: 852-861.
|
23 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2018: 4510-4520.
|
24 |
SUN L, DONG J X, TANG J H, et al. Spatially-adaptive feature modulation for efficient image super-resolution[EB/OL]. [2023-05-22]. http://arxiv.org/abs/2302.13800v1.
|
25 |
LI Y W, FAN Y C, XIANG X Y, et al. Efficient and explicit modelling of image hierarchies for image restoration[EB/OL]. [2023-05-22]. http://arxiv.org/abs/2303.00748v2.
|
26 |
|
27 |
AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C. , USA: IEEE Press, 2017: 1122-1131.
|
28 |
BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of British Machine Vision Conference. Surrey, UK: British Machine Vision Association, 2012: 325-333.
|
29 |
ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]//Proceedings of the 7th International Conference on Curves and Surfaces. New York, USA: ACM Press, 2010: 711-730.
|
30 |
MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Washington D. C. , USA: IEEE Press, 2001: 416-423.
|
31 |
HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2015: 5197-5206.
|
32 |
MATSUI Y, ITO K, ARAMAKI Y, et al. Sketch-based manga retrieval using manga109 dataset. Multimedia Tools and Applications, 2017, 76 (20): 21811- 21838.
|
33 |
LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2017: 5835-5843.
|
34 |
HUI Z, WANG X M, GAO X B. Fast and accurate single image super-resolution via information distillation network[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2018: 723-731.
|
35 |
LI W B, ZHOU K, QI L, et al. LAPAR: linearly-assembled pixel-adaptive regression network for single image super-resolution and beyond[EB/OL]. [2023-05-22]. http://arxiv.org/abs/2105.10422v1.
|
36 |
|
37 |
KONG F Y, LI M X, LIU S W, et al. Residual local feature network for efficient super-resolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C. , USA: IEEE Press, 2022: 765-775.
|