作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2026, Vol. 52 ›› Issue (1): 328-335. doi: 10.19678/j.issn.1000-3428.0069791

• 新一代网络与边缘计算 • 上一篇    下一篇

基于k-medoids信任的分布式H融合滤波方法

朱洪波, 高衍伸*()   

  1. 安徽理工大学电气与信息工程学院, 安徽 淮南 232001
  • 收稿日期:2024-04-26 修回日期:2024-06-16 出版日期:2026-01-15 发布日期:2024-08-21
  • 通讯作者: 高衍伸
  • 作者简介:

    朱洪波, 男, 副教授、博士, 主研方向为网络化感知估计、控制与优化及其应用

    高衍伸(通信作者),硕士研究生

  • 基金资助:
    国家自然科学基金(62003001); 安徽省高校自然科学研究重大项目(2023AH040157); 安徽理工大学研究生创新基金(2023cx2093)

k-medoids-Trust-Based Distributed H Fusion Filtering Method

ZHU Hongbo, GAO Yanshen*()   

  1. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
  • Received:2024-04-26 Revised:2024-06-16 Online:2026-01-15 Published:2024-08-21
  • Contact: GAO Yanshen

摘要:

针对无线传感器网络(WSN)中节点故障或异常情况下的系统状态估计问题, 提出一种基于k-medoids信任的分布式H融合滤波方法, 旨在提高传感器故障下系统状态估计的鲁棒性和精确性。该方法的主要步骤为: 首先, 各传感器节点分别采集局部测量信息并执行分布式H滤波更新局部状态估计; 然后, 各近邻传感器节点之间交换局部状态估计后, 通过建立k-medoids信任机制将获取的局部状态估计分为信任估计和非信任估计, 舍弃非信任估计而保留信任估计; 最后, 设计一种分布式扩散融合策略, 该策略计算信任估计的自适应权重并实时融合更新局部状态估计。通过目标跟踪的仿真结果表明, 在测量干扰故障、数据重放故障、错误数据注入故障下, 所提方法比基于信任的分布式卡尔曼滤波算法对传感器节点故障或异常更具弹性, 验证了所提方法的有效性和优越性。

关键词: 无线传感器网络, 状态估计, 分布式H滤波, 传感器故障, 扩散融合, 目标跟踪

Abstract:

To address the issues during system state estimation in the presence of node failures or anomalies in Wireless Sensor Networks (WSNs), a k-medoids-trust-based distributed H fusion filtering method is proposed to improve the robustness and accuracy of system state estimation in the event of sensor failures. The method has the following primary steps. First, each sensor node independently collects local measurement information and performs distributed H filtering to update its local state estimations. Subsequently, a k-medoids trust mechanism is established to divide the obtained local state estimations into trusted and untrusted estimations after the local state estimations are exchanged between neighboring sensor nodes. Untrusted estimations are discarded, whereas the trusted estimations are retained. A distributed diffusion fusion strategy is then designed that calculates the adaptive weights of the trusted estimations and fuses and updates the local state estimation in real time. The effectiveness and superiority of the proposed state estimation method are demonstrated using a target tracking simulation example. The results from simulated target tracking show that the proposed method is more resilient to sensor node faults or anomalies than the trust-based distributed Kalman filtering algorithm under measurement interference, data replay, and erroneous data injection faults, thus verifying the effectiveness and superiority of the proposed method.

Key words: Wireless Sensor Network (WSN), state estimation, distributed H filtering, sensor failure, diffusion fusion, target tracking