1 |
YU J Y , LEE E , OH S R , et al. A survey on security requirements for WSNs: focusing on the characteristics related to security. IEEE Access, 2020, 8, 45304- 45324.
doi: 10.1109/ACCESS.2020.2977778
|
2 |
WANG J W , ZHANG P , TANG L , et al. Intelligent passive eavesdropping in massive MIMO-OFDM systems via reinforcement learning. IEEE Wireless Communications Letters, 2022, 11 (6): 1248- 1252.
doi: 10.1109/LWC.2022.3163268
|
3 |
BALAKRISHNAN S, WANG P, BHUYAN A, et al. Modeling and analysis of eavesdropping attack in 802.11ad mmWave wireless networks[J]. IEEE Access, 2019, 7: 70355-70370.
|
4 |
MPITZIOPOULOS A , GAVALAS D , KONSTANTOPOULOS C , et al. A survey on jamming attacks and countermeasures in WSNs. IEEE Communications Surveys & Tutorials, 2009, 11 (4): 42- 56.
|
5 |
|
6 |
徐宜敏, 孙子文. 工业无线传感器网络中干扰攻击的入侵检测. 传感技术学报, 2017, 30 (11): 1693- 1699.
|
|
XU Y M , SUN Z W . Intrusion detection of jamming attack in industrial wireless sensor networks. Chinese Journal of Sensors and Actuators, 2017, 30 (11): 1693- 1699.
|
7 |
CHENG X, SHI J Y, SHA M, et al. Launching smart selective jamming attacks in WirelessHART networks[C]//Proceedings of the IEEE INFOCOM Conference on Computer Communications. Washington D.C., USA: IEEE Press, 2021: 1-10.
|
8 |
YANG W , WAN Y D , WANG Q . Enhanced secure time synchronisation protocol for IEEE802.15.4e-based industrial Internet of Things. IET Information Security, 2017, 11 (6): 369- 376.
doi: 10.1049/iet-ifs.2016.0232
|
9 |
张思超, 梁炜, 苑旭东, 等. 面向工业无线网络的时间同步攻击检测. 物联网学报, 2023, 7 (2): 88- 97.
|
|
ZHANG S C , LIANG W , YUAN X D , et al. Time synchronization attack detection for industrial wireless network. Chinese Journal on Internet of Things, 2023, 7 (2): 88- 97.
|
10 |
ZENG Y, ZHANG R. Active eavesdropping via spoofing relay attack[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C., USA: IEEE Press, 2016: 2159-2163.
|
11 |
NA X, GUO X Z, HE Y, et al. Wi-attack: cross-technology impersonation attack against iBeacon services[C]//Proceedings of the 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). Washington D.C., USA: IEEE Press, 2021: 1-9.
|
12 |
ANTONIOLI D, TIPPENHAUER N O, RASMUSSEN K. BIAS: bluetooth impersonation attacks[C]//Proceedings of the IEEE Symposium on Security and Privacy (SP). Washington D.C., USA: IEEE Press, 2020: 549-562.
|
13 |
霍文君, 王伟, 李文. AnomalyDetect: 一种基于欧式距离的在线异常检测算法. 中国科学技术大学学报, 2019, 49 (7): 555-563, 571.
|
|
HUO W J , WANG W , LI W . AnomayDetect: an online distance-based anomaly detection algorithm. Journal of University of Science and Technology of China, 2019, 49 (7): 555-563, 571.
|
14 |
FENG H L , LIANG L , LEI H . Distributed outlier detection algorithm based on credibility feedback in wireless sensor networks. IET Communications, 2017, 11 (8): 1291- 1296.
doi: 10.1049/iet-com.2016.0986
|
15 |
SINGH A , NAGAR J , SHARMA S , et al. A Gaussian process regression approach to predict the k-barrier coverage probability for intrusion detection in wireless sensor networks. Expert Systems with Applications, 2021, 172, 114603.
doi: 10.1016/j.eswa.2021.114603
|
16 |
MA C, YANG X H. A hierarchical intrusion detection model in wireless sensor networks[C]//Proceedings of the 4th IEEE International Conference on Electronics and Communication Engineering (ICECE). Washington D.C., USA: IEEE Press, 2021: 215-219.
|
17 |
孙扬威, 戚湧. 基于聚类混合采样与PSO-Stacking的车载CAN入侵检测方法. 计算机工程, 2023, 49 (1): 138- 145.
doi: 10.19678/j.issn.1000-3428.0064949
|
|
SUN Y W , QI Y . Intrusion detection method for in-vehicle CAN based on cluster mixed sampling and PSO-Stacking. Computer Engineering, 2023, 49 (1): 138- 145.
doi: 10.19678/j.issn.1000-3428.0064949
|
18 |
AL-QATF M , YU L S , AL-HABIB M , et al. Deep learning approach combining sparse autoencoder with SVM for network intrusion detection. IEEE Access, 2018, 6, 52843- 52856.
|
19 |
丁庆丰, 李晋国. 一种物联网环境下的分布式异常流量检测方案. 计算机工程, 2022, 48 (8): 152- 159.
doi: 10.19678/j.issn.1000-3428.0063284
|
|
DING Q F , LI J G . A distributed abnormal traffic detection scheme in Internet of Things environment. Computer Engineering, 2022, 48 (8): 152- 159.
doi: 10.19678/j.issn.1000-3428.0063284
|
20 |
COOK A A , MISIRLI G , FAN Z . Anomaly detection for IoT time-series data: a survey. IEEE Internet of Things Journal, 2020, 7 (7): 6481- 6494.
|
21 |
GAO C, CHEN Y P, WANG Z M, et al. Anomaly detection frameworks for outlier and pattern anomaly of time series in wireless sensor networks[C]//Proceedings of the International Conference on Networking and Network Applications (NaNA). Washington D.C., USA: IEEE Press, 2020: 229-232.
|
22 |
LIU Y X , WANG J , LI J Q , et al. Machine learning for the detection and identification of Internet of Things devices: a survey. IEEE Internet of Things Journal, 2022, 9 (1): 298- 320.
|
23 |
LIANG W , ZHENG M , ZHANG J L , et al. WIA-FA and its applications to digital factory: a wireless network solution for factory automation. Proceedings of the IEEE, 2019, 107 (6): 1053- 1073.
|
24 |
LIU F T, TING K M, ZHOU Z H. Isolation Forest[C]//Proceedings of the 8th IEEE International Conference on Data Mining. Washington D.C., USA: IEEE Press, 2008: 413-422.
|
25 |
DAVIS J, GOADRICH M. The relationship between precision-recall and ROC curves[C]//Proceedings of the 23rd International Conference on Machine Learning. New York, USA: ACM Press, 2006: 233-240.
|
26 |
FAWCETT T . An introduction to ROC analysis. Pattern Recognition Letters, 2006, 27 (8): 861- 874.
|