| 1 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778.
|
| 2 |
|
| 3 |
安玉, 葛海波, 何文昊, 等. 基于补偿注意力机制的Siamese网络跟踪算法. 计算机工程, 2024, 50 (4): 187- 196.
doi: 10.19678/j.issn.1000-3428.0067601
|
|
AN Y , GE H B , HE W H , et al. Siamese network tracking algorithm based on compensated attention mechanism. Computer Engineering, 2024, 50 (4): 187- 196.
doi: 10.19678/j.issn.1000-3428.0067601
|
| 4 |
任立成, 杨嘉棋, 魏宇星, 等. 基于特征融合与双模板嵌套更新的孪生网络跟踪算法. 计算机工程, 2021, 47 (7): 239- 248.
doi: 10.19678/j.issn.1000-3428.0058437
|
|
REN L C , YANG J Q , WEI Y X , et al. Tracking algorithm using Siamese network based on feature fusion and dual-template nested update. Computer Engineering, 2021, 47 (7): 239- 248.
doi: 10.19678/j.issn.1000-3428.0058437
|
| 5 |
杨帅东, 谌海云, 徐钒诚, 等. 基于孪生区域建议网络的无人机目标跟踪算法. 计算机工程, 2022, 48 (1): 288-295, 304.
doi: 10.19678/j.issn.1000-3428.0060045
|
|
YANG S D , CHEN H Y , XU F C , et al. Target tracking algorithm based on Siamese region proposal network for UAV. Computer Engineering, 2022, 48 (1): 288-295, 304.
doi: 10.19678/j.issn.1000-3428.0060045
|
| 6 |
王春雷, 张建林, 李美惠, 等. 结合卷积Transformer的目标跟踪算法. 计算机工程, 2023, 49 (4): 281-288, 296.
doi: 10.19678/j.issn.1000-3428.0064096
|
|
WANG C L , ZHANG J L , LI M H , et al. Object tracking algorithm combining convolution and Transformer. Computer Engineering, 2023, 49 (4): 281-288, 296.
doi: 10.19678/j.issn.1000-3428.0064096
|
| 7 |
CHEN X, YAN B, ZHU J W, et al. Transformer tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 8122-8131.
|
| 8 |
LIN L , FAN H , ZHANG Z , et al. SwinTrack: a simple and strong baseline for transformer tracking. Advances in Neural Information Processing Systems, 2022, 35, 16743- 16754.
|
| 9 |
FU Z H, FU Z H, LIU Q J, et al. SparseTT: visual tracking with sparse transformers[C]//Proceedings of the 21st International Joint Conference on Artificial Intelligence. Washington D.C., USA: IEEE Press, 2022: 905-912.
|
| 10 |
WANG X, WANG S, TANG C M, et al. Event stream-based visual object tracking: a high-resolution benchmark dataset and a novel baseline[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2024: 19248-19257.
|
| 11 |
ZHENG Y Z , ZHONG B N , LIANG Q H , et al. ODTrack: online dense temporal token learning for visual tracking. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38 (7): 7588- 7596.
doi: 10.1609/aaai.v38i7.28591
|
| 12 |
WU Y , LIM J , YANG M H . Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1834- 1848.
doi: 10.1109/TPAMI.2014.2388226
|
| 13 |
|
| 14 |
FAN H, LIN L T, YANG F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 5369-5378.
|
| 15 |
|
| 16 |
HUANG L H , ZHAO X , HUANG K Q . GOT10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (5): 1562- 1577.
doi: 10.1109/TPAMI.2019.2957464
|
| 17 |
WANG Q, TENG Z, XING J L, et al. Learning attentions: residual attentional Siamese network for high performance online visual tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 4854-4863.
|
| 18 |
HE A F, LUO C, TIAN X M, et al. A twofold Siamese network for real-time object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 4834-4843.
|
| 19 |
WANG N, ZHOU W G, WANG J, et al. Transformer meets tracker: exploiting temporal context for robust visual tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 1571-1580.
|
| 20 |
BHAT G, DANELLJAN M, VAN GOOL L, et al. Learning discriminative model prediction for tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 6181-6190.
|
| 21 |
YAN B, PENG H W, FU J L, et al. Learning spatio-temporal transformer for visual tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 10428-10437.
|
| 22 |
GUO D Y, SHAO Y Y, CUI Y, et al. Graph attention tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 9538-9547.
|
| 23 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 11531-11539.
|
| 24 |
|
| 25 |
HU J , SHEN L , ALBANIE S , et al. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023.
doi: 10.1109/TPAMI.2019.2913372
|
| 26 |
|
| 27 |
|
| 28 |
|
| 29 |
LI B, YAN J J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 8971-8980.
|
| 30 |
LI B, WU W, WANG Q, et al. SiamRPN++: evolution of Siamese visual tracking with very deep networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 4277-4286.
|
| 31 |
TANG F, LING Q. Ranking-based Siamese visual tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 8731-8740.
|
| 32 |
CHEN Z D, ZHONG B N, LI G R, et al. Siamese box adaptive network for visual tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 6667-6676.
|
| 33 |
CAO Z A, HUANG Z Y, PAN L, et al. TCTrack: temporal contexts for aerial tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 14778-14788.
|
| 34 |
CAO Z A, FU C H, YE J J, et al. HiFT: hierarchical feature transformer for aerial tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 15437-15446.
|
| 35 |
|
| 36 |
YU Y C, XIONG Y L, HUANG W L, et al. Deformable Siamese attention networks for visual object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 6727-6736.
|
| 37 |
|
| 38 |
DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: accurate tracking by overlap maximization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 4655-4664.
|
| 39 |
|
| 40 |
|
| 41 |
WU Q Q, YANG T Y, LIU Z Q, et al. DropMAE: masked autoencoders with spatial-attention dropout for tracking tasks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 14561-14571.
|
| 42 |
WANG J , YANG S , WANG Y Y . Dynamic region-aware transformer backbone network for visual tracking. Engineering Applications of Artificial Intelligence, 2024, 133, 108329.
doi: 10.1016/j.engappai.2024.108329
|
| 43 |
WANG J , LAI C W , WANG Y Y , et al. EMAT: efficient feature fusion network for visual tracking via optimized multi-head attention. Neural Networks, 2024, 172, 106110.
doi: 10.1016/j.neunet.2024.106110
|
| 44 |
CAO Z A , HUANG Z Y , PAN L , et al. Towards real-world visual tracking with temporal contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (12): 15834- 15849.
doi: 10.1109/TPAMI.2023.3307174
|