计算机工程 ›› 2011, Vol. 37 ›› Issue (18): 195-197.doi: 10.3969/j.issn.1000-3428.2011.18.065

• 人工智能及识别技术 • 上一篇    下一篇

基于多种采样方式和Gabor特征的表情识别

徐 洁,章毓晋   

  1. (清华大学电子工程系,北京 100084)
  • 收稿日期:2011-03-03 出版日期:2011-09-20 发布日期:2011-09-20
  • 作者简介:徐 洁(1977-),女,硕士,主研方向:图形图像处理;章毓晋,教授
  • 基金项目:
    国家自然科学基金资助项目(60872084)

Expression Recognition Based on Variant Sampling Method and Gabor Features

XU Jie, ZHANG Yu-jin   

  1. (Department of Electronic Engineering, Tsinghua University, Beijing 100084, China)
  • Received:2011-03-03 Online:2011-09-20 Published:2011-09-20

摘要: 设计一种表情识别系统,采用多种采样方式和不同尺度的局部Gabor滤波器,通过主成分分析与线性判别分析对人脸表情识别系统进行特征优化选择。该系统大幅缩减特征提取及分类的时空需求量,表情识别率也有所提高。对原始图像沿垂直方向采样识别效果说明人脸垂直方向包含更多的表情信息。实验测试结果表明,Gabor变换后的人脸表情主要特征信息在不同的尺度和方向上具有集中性和冗余性,小尺度全方向的滤波器组能获得更好的识别性。

关键词: Gabor变换, 特征提取, 下采样, 主成分分析, 线性判别分析

Abstract: This paper investigates a facial expression recognition system based on variant sampling method and different scales of local Gabor features optimized by Principal Component Analysis(PCA)+ Linear Discriminant Analysis(LDA). The sampling method not only reduces the need of compute time and storage memory, but also improves the recognition rates. The result obtained from the sampling in the vertical direction expresses that this direction includes much more facial expression information. Also the influence on facial expression recognition rates based on variant Gabor filters in different scales and directions can be concluded that the primitive information of facial expression features have redundancy in scales and directions.

Key words: Gabor transform, feature extraction, downsampling, Principal Component Analysis(PCA), Linear Discriminant Analysis(LDA)

中图分类号: