1 |
ZHOU W, GONG Z X, GUO W, et al. Robust graph structure learning for multimedia data analysis. Wireless Communications and Mobile Computing, 2021, 2021, 9458188.
doi: 10.1155/2021/9458188
|
2 |
LOHRMANN C, LUUKKA P, JABLONSKA-SABUKA M, et al. A combination of fuzzy similarity measures and fuzzy entropy measures for supervised feature selection. Expert Systems with Applications, 2018, 110, 216- 236.
doi: 10.1016/j.eswa.2018.06.002
|
3 |
RAY P, REDDY S S, BANERJEE T. Various dimension reduction techniques for high dimensional data analysis: a review. Artificial Intelligence Review, 2021, 54(5): 3473- 3515.
doi: 10.1007/s10462-020-09928-0
|
4 |
AYESHA S, HANIF M K, TALIB R. Overview and comparative study of dimensionality reduction techniques for high dimensional data. Information Fusion, 2020, 59, 44- 58.
doi: 10.1016/j.inffus.2020.01.005
|
5 |
JIA W K, SUN M L, LIAN J, et al. Feature dimensionality reduction: a review. Complex & Intelligent Systems, 2022, 8(3): 2663- 2693.
|
6 |
ZEBARI R, ABDULAZEEZ A, ZEEBAREE D, et al. A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. Journal of Applied Science and Technology Trends, 2020, 1(1): 56- 70.
doi: 10.38094/jastt1224
|
7 |
SEUNG H S, LEE D D. The manifold ways of perception. Science, 2000, 290(5500): 2268- 2269.
doi: 10.1126/science.290.5500.2268
|
8 |
HAN H, LI W T, WANG J C, et al. Enhance explainability of manifold learning. Neurocomputing, 2022, 500, 877- 895.
doi: 10.1016/j.neucom.2022.05.119
|
9 |
HE X, NIYOGI P. Locality preserving projections[C]//Proceedings of the 16th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2003: 1-8.
|
10 |
HE X F, CAI D, YAN S C, et al. Neighborhood preserving embedding[C]//Proceedings of the 10th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2005: 1208-1213.
|
11 |
QIAO L S, CHEN S C, TAN X Y. Sparsity preserving projections with applications to face recognition. Pattern Recognition, 2010, 43(1): 331- 341.
doi: 10.1016/j.patcog.2009.05.005
|
12 |
CHEN F X, WANG Y C, WANG B, et al. Graph representation learning: a survey. APSIPA Transactions on Signal and Information Processing, 2020, 9(1): e15.
|
13 |
LU J L, WANG H L, ZHOU J, et al. Low-rank adaptive graph embedding for unsupervised feature extraction. Pattern Recognition, 2021, 113, 107758.
doi: 10.1016/j.patcog.2020.107758
|
14 |
NIE F, WANG Z, WANG R, et al. Adaptive local embedding learning for semi-supervised dimensionality reduction. IEEE Transactions on Knowledge and Data Engineering, 2021, 34(10): 4609- 4621.
|
15 |
NIE F P, DONG X, LI X L. Unsupervised and semisupervised projection with graph optimization. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(4): 1547- 1559.
|
16 |
范君, 业巧林, 业宁. 基于改进的有监督无参局部保持投影算法的人脸识别. 山东大学学报(工学版), 2019, 49(1): 10- 16.
URL
|
|
FAN J, YE Q L, YE N. Face recognition based on improved prameter-free supervised locality preserving projections. Journal of Shandong University (Engineering Science), 2019, 49(1): 10- 16.
URL
|
17 |
梁兴柱, 林玉娥, 许光宇. 无参数无相关最大化判别边界算法. 图学学报, 2019, 40(1): 105- 110.
URL
|
|
LIANG X Z, LIN Y E, XU G Y. Parameter-free uncorrelated maximum discriminant margin algorithm. Journal of Graphics, 2019, 40(1): 105- 110.
URL
|
18 |
LU X H, LONG J, WEN J, et al. Locality preserving projection with symmetric graph embedding for unsupervised dimensionality reduction. Pattern Recognition, 2022, 131, 108844.
doi: 10.1016/j.patcog.2022.108844
|
19 |
CHEN H, NIE F P, WANG R, et al. Adaptive flexible optimal graph for unsupervised dimensionality reduction. IEEE Signal Processing Letters, 2021, 28, 2162- 2166.
doi: 10.1109/LSP.2021.3116521
|
20 |
WAN M H, CHEN X Y, ZHAN T M, et al. Low-rank 2D local discriminant graph embedding for robust image feature extraction. Pattern Recognition, 2023, 133, 109034.
doi: 10.1016/j.patcog.2022.109034
|
21 |
LONG T H, GAO J B, YANG M Y, et al. Locality preserving projection via deep neural network[C]//Proceedings of the International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2019: 1-8.
|
22 |
WANG A G, ZHAO S H, LIU J J, et al. Locality adaptive preserving projections for linear dimensionality reduction. Expert Systems with Applications, 2020, 151, 113352.
URL
|
23 |
RAN R S, QIN H, ZHANG S G, et al. Simple and robust locality preserving projections based on maximum difference criterion. Neural Processing Letters, 2022, 54(3): 1783- 1804.
doi: 10.1007/s11063-021-10706-4
|
24 |
RAN R S, FENG J, ZHANG S G, et al. A general matrix function dimensionality reduction framework and extension for manifold learning. IEEE Transactions on Cybernetics, 2022, 52(4): 2137- 2148.
|
25 |
LONG T H, SUN Y F, GAO J B, et al. Locality preserving projection based on Euler representation. Journal of Visual Communication and Image Representation, 2020, 70, 102796.
|
26 |
RAN R S, REN Y S, ZHANG S G, et al. A novel discriminant locality preserving projections method. Journal of Mathematical Imaging and Vision, 2021, 63(5): 541- 554.
|
27 |
WAN M H, YAO Y, ZHAN T M, et al. Supervised Low-Rank Embedded Regression(SLRER) for robust subspace learning. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(4): 1917- 1927.
|