[1] AIT OUALLANE A, BAKALI A, BAHNASSE A, et al. Fusion of engineering insights and emerging trends:intelligent urban traffic management system[J]. Information Fusion, 2022, 88:218-248. [2] 张小瑞, 陈旋, 孙伟, 等. 基于深度学习的车辆再识别研究进展[J]. 计算机工程, 2020, 46(11):1-11. ZHANG X R, CHEN X, SUN W, et al. Progress of vehicle re-identification research based on deep learning[J]. Computer Engineering, 2020, 46(11):1-11.(in Chinese) [3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2014:580-587. [4] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [5] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2017:2980-2988. [6] GHOSH R. On-road vehicle detection in varying weather conditions using Faster R-CNN with several region proposal networks[J]. Multimedia Tools and Applications, 2021, 80(17):25985-25999. [7] DAI X B, HU J P, ZHANG H M, et al. Multi-task Faster R-CNN for nighttime pedestrian detection and distance estimation[J]. Infrared Physics & Technology, 2021, 115:103694. [8] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin,Germany:Springer,2016:21-37. [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2016:779-788. [10] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2017:6517-6525. [11] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2023-04-05]. https:arxiv.org/abs/1701.06659. [12] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2017:2980-2988. [13] CHEN S L, HONG J, ZHANG T, et al. Object detection using deep learning:single shot detector with a refined feature-fusion structure[C]//Proceedings of IEEE International Conference on Real-time Computing and Robotics. Washington D.C.,USA:IEEE Press,2019:219-224. [14] 李国进, 胡洁, 艾矫燕. 基于改进SSD算法的车辆检测[J]. 计算机工程, 2022, 48(1):266-274. LI G J, HU J, AI J Y. Vehicle detection based on improved SSD algorithm[J]. Computer Engineering, 2022, 48(1):266-274.(in Chinese) [15] GUO X Y, LIU Q L, QIN Z K, et al. Target detection of forward vehicle based on improved SSD[C]//Proceedings of the 6th IEEE International Conference on Cloud Computing and Big Data Analytics. Washington D.C.,USA:IEEE Press,2021:466-468. [16] JAIN N, YERRAGOLLA S, GUHA T, et al. Performance analysis of object detection and tracking algorithms for traffic surveillance applications using neural networks[C]//Proceedings of the 3rd International Conference on I-SMAC. Washington D.C.,USA:IEEE Press,2019:690-696. [17] MAURI A, KHEMMAR R, DECOUX B, et al. Lightweight convolutional neural network for real-time 3D object detection in road and railway environments[J]. Journal of Real-Time Image Processing, 2022, 19(3):499-516. [18] JACOB B, KLIGYS S, CHEN B, et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:2704-2713. [19] YOUNG S I, ZHE W, TAUBMAN D, et al. Transform quantization for CNN compression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9):5700-5714. [20] HAN S, POOL J, TRAN J, et al. Learning both weights and connections for efficient neural network[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge,USA:MIT Press, 2015:1135-1143. [21] RIERA M, ARNAU J M, GONZÁLEZ A. DNN pruning with principal component analysis and connection importance estimation[J]. Journal of Systems Architecture, 2022, 122:102336. [22] KUSHAWAHA R K, KUMAR S, BANERJEE B, et al. Distilling spikes:knowledge distillation in spiking neural networks[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D.C.,USA:IEEE Press,2021:4536-4543. [23] LIN Y, WANG C F, CHANG C Y, et al. An efficient framework for counting pedestrians crossing a line using low-cost devices:the benefits of distilling the knowledge in a neural network[J]. Multimedia Tools and Applications, 2021, 80(3):4037-4051. [24] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2023-04-05]. https://doi.org/10.48550/arXiv.1704.04861. [25] GAO M, JIN L S, JIANG Y Y, et al. Multiple object tracking using a dual-attention network for autonomous driving[J]. IET Intelligent Transport Systems, 2020, 14(8):842-848. [26] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[EB/OL].[2023-04-05]. https://doi.org/10.48550/arXiv.1709.01507. [27] LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[EB/OL].[2023-04-05]. https://doi.org/10.48550/arXiv.1711.07767. [28] 姜竣, 翟东海. 基于空洞卷积与特征增强的单阶段目标检测算法[J]. 计算机工程, 2021, 47(7):232-238, 248. JIANG J, ZHAI D H. Single-stage object detection algorithm based on dilated convolution and feature enhancement[J]. Computer Engineering, 2021, 47(7):232-238, 248.(in Chinese) |