1 |
HUANG B, YANG F, YIN M X, et al. A review of multimodal medical image fusion techniques. Computational and Mathematical Methods in Medicine, 2020, 2020, 8279342.
|
2 |
KARIM S, TONG G, LI J Y, et al. Current advances and future perspectives of image fusion: a comprehensive review. Information Fusion, 2023, 90(C): 185- 217.
|
3 |
|
4 |
DO M N, VETTERLI M. Framing pyramids. IEEE Transactions on Signal Processing, 2003, 51(9): 2329- 2342.
doi: 10.1109/TSP.2003.815389
|
5 |
LIU Y, LIU S P, WANG Z F. A general framework for image fusion based on multi-scale transform and sparse representation. Information Fusion, 2015, 24, 147- 164.
doi: 10.1016/j.inffus.2014.09.004
|
6 |
ZHU Z Q, ZHENG M Y, QI G Q, et al. A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain. IEEE Access, 2019, 7, 20811- 20824.
doi: 10.1109/ACCESS.2019.2898111
|
7 |
LIU Y, WANG Z F. Simultaneous image fusion and denoising with adaptive sparse representation. IET Image Processing, 2015, 9(5): 347- 357.
doi: 10.1049/iet-ipr.2014.0311
|
8 |
LI G F, LIN Y J, QU X D. An infrared and visible image fusion method based on multi-scale transformation and norm optimization. Information Fusion, 2021, 71, 109- 129.
doi: 10.1016/j.inffus.2021.02.008
|
9 |
LIU Y, CHEN X, CHENG J, et al. A medical image fusion method based on convolutional neural networks[C]//Proceedings of the 20th International Conference on Information Fusion. Washington D. C., USA: IEEE Press, 2017: 1-7.
|
10 |
CHANG L, FENG X, ZHU X, et al. CT and MRI image fusion based on multiscale decomposition method and hybrid approach. IET Image Processing, 2019, 13(1): 83- 88.
doi: 10.1049/iet-ipr.2018.5720
|
11 |
宋瑞霞, 王孟, 王小春, 等. 基于多层次多方向分解的医学图像融合算法. 计算机工程, 2017, 43(10): 179- 185.
URL
|
|
SONG R X, WANG M, WANG X C, et al. Medical image fusion algorithm based on multi-layer and multi-direction decomposition. Computer Engineering, 2017, 43(10): 179- 185.
URL
|
12 |
郭淑娟, 高媛, 秦品乐, 等. 基于多尺度边缘保持分解与PCNN的医学图像融合. 计算机工程, 2021, 47(3): 276- 283.
URL
|
|
GUO S J, GAO Y, QIN P L, et al. Medical image fusion based on multi-scale edge-preserving decomposition and PCNN. Computer Engineering, 2021, 47(3): 276- 283.
URL
|
13 |
YANG Y, ZHANG Y, WU J, et al. Multi-focus image fusion based on a non-fixed-base dictionary and multi-measure optimization. IEEE Access, 2019, 7, 46376- 46388.
doi: 10.1109/ACCESS.2019.2908978
|
14 |
LIN Y C, CAO D X, ZHOU X C. Adaptive infrared and visible image fusion method by using rolling guidance filter and saliency detection. Optik, 2022, 262, 169218.
doi: 10.1016/j.ijleo.2022.169218
|
15 |
姜寒雪, 郭立强. 一种基于NSCT和对比度拉伸的红外与可见光图像融合算法. 淮阴师范学院学报(自然科学版), 2022, 21(1): 17- 23.
URL
|
|
JIANG H X, GUO L Q. An infrared and visible image fusion algorithm based on the NSCT and image contrast stretching. Journal of Huaiyin Teachers College (Natural Science Edition), 2022, 21(1): 17- 23.
URL
|
16 |
LIU G C, YAN S C. Latent low-rank representation for subspace segmentation and feature extraction[C]//Proceedings of 2011 International Conference on Computer Vision. New York, USA: ACM Press, 2011: 1615-1622.
|
17 |
LI H, WU X J, KITTLER J. MDLatLRR: a novel decomposition method for infrared and visible image fusion. IEEE Transactions on Image Processing, 2020, 29, 4733- 4746.
doi: 10.1109/TIP.2020.2975984
|
18 |
高媛, 贾紫婷, 秦品乐, 等. 基于压缩感知与自适应PCNN的医学图像融合. 计算机工程, 2018, 44(9): 224- 229.
URL
|
|
GAO Y, JIA Z T, QIN P L, et al. Medical image fusion based on compressive sensing and adaptive PCNN. Computer Engineering, 2018, 44(9): 224- 229.
URL
|
19 |
YIN M, LIU X N, LIU Y, et al. Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain. IEEE Transactions on Instrumentation and Measurement, 2019, 68(1): 49- 64.
doi: 10.1109/TIM.2018.2838778
|
20 |
|
21 |
QU G H, ZHANG D L, YAN P F. Information measure for performance of image fusion. Electronics Letters, 2002, 38(7): 313.
doi: 10.1049/el:20020212
|
22 |
|
23 |
|
24 |
ASLANTAS V, BENDES E. A new image quality metric for image fusion: the sum of the correlations of differences. AEU-International Journal of Electronics and Communications, 2015, 69(12): 1890- 1896.
|
25 |
|
26 |
ZHENG Y F, ESSOCK E A, HANSEN B C, et al. A new metric based on extended spatial frequency and its application to DWT based fusion algorithms. Information Fusion, 2007, 8(2): 177- 192.
|
27 |
HAGHIGHAT M B A, AGHAGOLZADEH A, SEYEDARABI H. A non-reference image fusion metric based on mutual information of image features. Computers and Electrical Engineering, 2011, 37(5): 744- 756.
|
28 |
XU H, MA J Y. EMFusion: an unsupervised enhanced medical image fusion network. Information Fusion, 2021, 76(C): 177- 186.
|
29 |
ZHANG Y, XIANG W H, ZHANG S L, et al. Local extreme map guided multi-modal brain image fusion. Frontiers in Neuroscience, 2022, 16, 1055451.
|
30 |
VESHKI F G, OUZIR N, VOROBYOV S A, et al. Multimodal image fusion via coupled feature learning. Signal Processing, 2022, 200, 108637.
|