参考文献
[1]崔智高,李艾华,冯国彦.采用多组单应约束和马尔可夫随机场的运动目标检测算法[J].计算机辅助设计与图形学学报,2015,27(4):621-632.
[2]甘明刚,陈杰,刘劲,等.一种基于三帧差分和边缘信息的运动目标检测方法[J].电子与信息学报,2010,32(4):894-897.
[3]陈明生,梁光明,孙即祥,等.复杂背景下H.264压缩域运动目标检测算法[J].通信学报,2011,32(3):91-97.
[4]Mukherjee D,Wu Q M J,Nguyen T M.Multiresolution Based Gaussian Mixture Model for Background Suppression[J].IEEE Transactions on Image Processing,2013,22(12):5022-5035.
[5]Maddalena L,Petrosino A.A Self-organizing Approach to Background Subtraction for Visual Surveillance Applications[J].IEEE Transactions on Image Processing,2008,17(7):1168-1177.
[6]丁莹,李文辉,范静涛,等.基于Choquet模糊积分的运动目标检测算法[J].电子学报.2010,38(2):263-268.
[7]张超,吴小培,吕钊.基于独立分量分析的运动目标检测算法中对通道数选择和观测向量生成方式的实验和分析[J].电子与信息学报,2015,37(1):137-142.
[8]侯旺,于起峰,雷志辉,等.基于分块速度域改进迭代运动目标检测算法的红外弱小目标检测[J].物理学报,2014,7(7):149-161.
[9]Marco P,Andrea V,Jordi G,et al.A Coarse-to-fine Approach for Fast Deformable Object Detection[J].Pattern Recognition,2015,48(5):1844-1853.
[10]Xiao Jinwen,Wei Hui.Scale-invariant Contour Segment Context in Object Detection[J].Image and Vision Computing,2014,32(12):1055-1066.
[11]王思明,赵伟.亮度特征自相关和GMM相结合的目标检测[J].计算机工程,2014,40(5):219-223.
[12]陈耀东,李仁发,李实英,等.面向目标检测与姿态估计的联合文法模型[J].计算机学报,2014,37(10):2206-2217.
[13]陈耀东,李仁发.一种面向目标检测的部件学习方法[J].计算机研究与发展,2013,50(9):1902-1913.
[14]Ashish G,Ajoy M,Susmita G.Moving Object Detection Using Markov Random Field and Distributed Differential Evolution[J].Applied Soft Computing,2014,15(2):121-136.
[15]Prasad R,Murthy C R,Rao B D.Joint Approximately Sparse Channel Estimation and Data Detection in OFDM Systems Using Sparse Bayesian Learning[J].IEEE Transactions on Signal Processing,2014,62(14):3591-3603.
编辑刘冰
|