1 |
|
2 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
3 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
4 |
YAN C Q , ZHANG H , LI X L , et al. R-SSD: refined single shot multi-box detector for pedestrian detection. Applied Intelligence, 2022, 52 (9): 10430- 10447.
doi: 10.1007/s10489-021-02798-1
|
5 |
LIU Q, KORTYLEWSKI A, ZHANG Z S, et al. Learning part segmentation through unsupervised domain adaptation from synthetic vehicles[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 19118-19129.
|
6 |
PENG D, LEI Y J, HAYAT M, et al. Semantic-aware domain generalized segmentation[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 2584-2595.
|
7 |
ZHOU E , XU X , XU B , et al. An enhancement model based on dense aurous and inception convolution for image semantic segmentation. Applied Intelligence, 2023, 53 (5): 5519- 5531.
|
8 |
司念文, 张文林, 屈丹, 等. 卷积神经网络表征可视化研究综述. 自动化学报, 2022, 48 (8): 1890- 1920.
|
|
SI N W , ZHANG W L , QU D , et al. Representation visualization of convolutional neural networks: a survey. Acta Automatica Sinical, 2022, 48 (8): 1890- 1892.
|
9 |
EHSAN U, WINTERSBERGER P, LIAO Q V, et al. Human-centered explainable AI: beyond opening the black-box of AI[C]//Proceedings of International Conference on Human Factors in Computing Systems. New York, USA: ACM Press, 2022: 1009-1020.
|
10 |
GLOROT X , BENGIO Y . Understanding the difficulty of training deep feedforward neural networks. Journal of Machine Learning Research, 2010, 9, 249- 256.
|
11 |
梁礼明, 金家新, 冯耀, 等. 融合坐标感知与混合提取的视网膜病变分级算法. 光电工程, 2024, 51 (1): 230276.
|
|
LIANG L M , JIN J X , FENG Y , et al. Retinal lesions graded algorithm that integrates coordinate perception and hybrid extraction. Opto-Electronic Engineering, 2024, 51 (1): 230276.
|
12 |
MOHAMED E , SIRLANTZIS K , HOWELLS G . A review of visualization and explanation techniques for convolutional neural networks and their evaluation. Displays, 2022, 73 (5): 1245- 1258.
|
13 |
NGUYEN A , YOSINSKI J , CLUNE J . Understanding neural networks via feature visualization: a survey. Cambridge, USA: MIT Press, 2019.
|
14 |
OYEDOTUN O K, EL RAHMAN S A, AOUADA D, et al. Training very deep networks via residual learning with stochastic input shortcut connections[C]//Proceedings of International Conference on Neural Information Processing. Berlin, Germany: Springer, 2017: 23-33.
|
15 |
OYEDOTUN O K , ISMAEIL K A , AOUADA D . Why is everyone training very deep neural network with skip connections?. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (9): 5961- 5975.
doi: 10.1109/TNNLS.2021.3131813
|
16 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. New York, USA: ACM Press, 2015: 448-456.
|
17 |
CHEN Y, LI J, XIAO H, et al. Dual path networks[C]//Proceedings of Annual Conference on Neural Information Processing Systems. Long Beach, USA: NIPS Foundation, 2017: 4468-4476.
|
18 |
ZHANG X C, LI Z Z, LOY C C, et al. PolyNet: a pursuit of structural diversity in very deep networks[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 3900-3908.
|
19 |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[EB/OL]. [2023-10-18]. https://arxiv.org/pdf/1602.07261.
|
20 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of Annual Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 5999-6009.
|
21 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[C]//Proceedings of International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2021: 5278-5284.
|
22 |
DAI D , LI Y T , WANG Y Q , et al. Rethinking the image feature biases exhibited by deep convolutional neural network models in image recognition. CAAI Transactions on Intelligence Technology, 2022, 7 (4): 721- 731.
doi: 10.1049/cit2.12097
|
23 |
FONG R C, VEDALDI A. Interpretable explanations of black boxes by meaningful perturbation[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 3449-3457.
|
24 |
FONG R C, PATRICK M, VEDALDI A. Understanding deep networks via extremal perturbations and smooth masks[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 2950-2958.
|
25 |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 818-833.
|
26 |
|
27 |
|
28 |
KIM B, SEO J, JEON S, et al. Why are saliency maps noisy solution to noisy saliency maps[C]//Proceedings of IEEE International Conference on Computer Vision Workshops. Washington D. C., USA: IEEE Press, 2019: 4149-4157.
|
29 |
|
30 |
IWANA B K, KUROKI R, UCHIDA S. Explaining convolutional neural networks using softmax gradient layer-wise relevance propagation[C]//Proceedings of IEEE International Conference on Computer Vision Workshops. Washington D. C., USA: IEEE Press, 2019: 4176-4185.
|
31 |
SELVARAJU R R , COGSWELL M , DAS A , et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 2020, 128 (2): 336- 359.
doi: 10.1007/s11263-019-01228-7
|
32 |
SHI T, LI Y, LIANG H, et al. Score-CAM: class activation map based on logarithmic transformation[C]//Proceedings of IEEE International Conference on Signal Processing. Washington D. C., USA: IEEE Press, 2022: 256-259.
|
33 |
MONTAVON G , LAPUSCHKIN S , BINDER A , et al. Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recognition, 2017, 65, 211- 222.
doi: 10.1016/j.patcog.2016.11.008
|
34 |
YOSINSKI J , CLUNE J , NGUYEN A , et al. Understanding neural networks through deep visualization. Neural Networks, 2015, 34, 345- 356.
|
35 |
WANG F , LIU H , CHENG J . Visualizing deep neural network by alternately image blurring and deblurring. Neural Networks, 2018, 97, 162- 172.
doi: 10.1016/j.neunet.2017.09.007
|
36 |
SHI R , LI T , YAMAGUCHI Y . Group visualization of class-discriminative features. Neural Networks, 2020, 129, 75- 90.
doi: 10.1016/j.neunet.2020.05.026
|
37 |
KATZMANN A , TAUBMANN O , AHMAD S , et al. Explaining clinical decision support systems in medical imaging using cycle-consistent activation maximization. Neurocomputing, 2021, 458, 141- 156.
doi: 10.1016/j.neucom.2021.05.081
|
38 |
MAHENDRAN A, VEDALDI A. Understanding deep image representations by inverting them[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 5188-5196.
|
39 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 248-255.
|