作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (3): 54-63. doi: 10.19678/j.issn.1000-3428.0069042

• 热点与综述 • 上一篇    下一篇

一种增强前景的轻量级交通标志检测模型

袁亚剑1, 毛力1,2,3,*()   

  1. 1. 江南大学人工智能与计算机学院, 江苏 无锡 214122
    2. 江南大学先进技术研究院, 江苏 无锡 214122
    3. 江南大学江苏省模式识别与计算机智能工程实验室, 江苏 无锡 214122
  • 收稿日期:2023-12-18 出版日期:2025-03-15 发布日期:2025-03-24
  • 通讯作者: 毛力
  • 基金资助:
    国家自然科学基金面上项目(62272202)

A Lightweight Traffic Sign Detection Model with Enhanced Foregrounds

YUAN Yajian1, MAO Li1,2,3,*()   

  1. 1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, Jiangsu, China
    2. Institute of Advanced Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
    3. Jiangsu Engineering Laboratory of Pattern Recognition and Computer Intelligence, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Received:2023-12-18 Online:2025-03-15 Published:2025-03-24
  • Contact: MAO Li

摘要:

交通标志检测在辅助驾驶中扮演着不可或缺的角色, 为安全驾驶提供了至关重要的支持。在实际交通环境中, 在黑夜或雨天产生的背景噪声会加大交通标志检测的难度。现有模型往往难以有效检出远处的小目标交通标志, 此外, 在设计交通标志检测模型时应当考虑到实际部署对模型体积的要求。为此, 在YOLOv8的基础上提出一种增强前景的轻量级交通标志目标检测模型。首先, 设计了1个轻量级的PC2f模块替换掉原本Backbone中的部分C2f模块, 该模块降低了模型的参数量和计算量, 在保留更多浅层信息的同时进一步丰富了梯度流信息, 同时实现了模型轻量化和提升检测性能; 其次, 设计了前景增强模块(FEM)并将其引入Neck位置, 该模块能够有效放大前景信息并减弱背景噪声; 最后, 增加了一层小目标检测层, 用于在高分辨率的图像上提取浅层特征, 加强模型对小目标交通标志的检测性能。实验结果表明, 优化后的模型在数据集CCTSDB 2021和GTSDB上的mAP50分别达到了82.5%和95.3%, 相较于原模型分别提升了3.6和1百分点, 并且模型权重大小减小了0.22×106。这些结果验证了所提模型在实际应用中的有效性。

关键词: 交通标志检测, 轻量化网络, 前景增强模块, 小目标检测, 黑夜场景目标检测

Abstract:

Traffic sign detection is crucial for assisted driving and plays a vital role in ensuring driving safety. However, in real-world traffic environments, factors such as darkness and rain create background noise that complicates the detection process. In addition, existing models often struggle to effectively detect small traffic signs from a distance. Furthermore, when a traffic sign detection model is designed, the model size must be considered for practical deployment. To address these challenges, this study proposes a lightweight traffic sign detection model based on YOLOv8 with enhanced foregrounds. First, a lightweight PC2f module is designed to replace a part of the C2f module in the original Backbone. This modification reduces the number of parameters and computational load, enriches the gradient flow, retains more shallow information, and ultimately enhances detection performance while maintaining a lightweight design. Next, the study designs a Foreground Enhancement Module (FEM) and incorporates it into the Neck position to effectively amplify the foreground information and reduce background noise. Finally, the study adds a small-target detection layer to extract shallow features from high-resolution images, thereby improving the ability of the model to detect small-target traffic signs. Experimental results show that the optimized model achieves a mAP50 of 82.5% and 95.3% on the CCTSDB 2021 and GTSDB datasets, which is an improvement of 3.6 and 1 percentage points over the original model, respectively, with a reduction in model weight size by 0.22×106. These results confirm the effectiveness of the proposed model for practical applications.

Key words: traffic sign detection, lightweight network, Foreground Enhancement Module (FEM), small target detection, dark scene target detection