1 |
BENALLAL M, MEUNIER J. Real-time color segmentation of road signs[C]//Proceedings of Canadian Conference on Electrical and Computer Engineering. Washington D. C., USA: IEEE Press, 2003: 1823-1826.
|
2 |
MALIK R, KHURSHID J, AHMAD S N. Road sign detection and recognition using color segmentation, shape analysis and template matching[C]//Proceedings of International Conference on Machine Learning and Cybernetics. Washington D. C., USA: IEEE Press, 2007: 3556-3560.
|
3 |
JEON W J, SANCHEZ G A R, LEE T, et al. Real-time detection of speed-limit traffic signs on the real road using Haar-like features and boosted cascade[C]//Proceedings of the 8th International Conference on Ubiquitous Information Management and Communication. Washington D. C., USA: IEEE Press, 2014: 1-5.
|
4 |
BOUJEMAA K S, BERRADA I, BOUBOUH A, et al. Traffic sign recognition using convolutional neural networks[C]//Proceedings of 2017 International Conference on Wireless Networks and Mobile Communications. Washington D. C., USA: IEEE Press, 2017: 1-6.
|
5 |
WANG F, LI Y D, WEI Y C, et al. Improved Faster RCNN for traffic sign detection[C]//Proceedings of the 23rd International Conference on Intelligent Transportation Systems (ITSC). Washington D. C., USA: IEEE Press, 2020: 1-6.
|
6 |
WEI H Y , ZHANG Q Q , QIAN Y R , et al. MTSDet: multi-scale traffic sign detection with attention and path aggregation. Applied Intelligence, 2023, 53, 238- 250.
doi: 10.1007/s10489-022-03459-7
|
7 |
李嘉豪, 闵卫东, 陈炯缙, 等. 一种复杂场景下高精度交通标志检测模型. 计算机工程, 2023, 49 (11): 311- 320.
doi: 10.19678/j.issn.1000-3428.0066372
|
|
LI J H , MIN W D , CHEN J J , et al. A high precision traffic sign detection model in complex scense. Computer Engineering, 2023, 49 (11): 311- 320.
doi: 10.19678/j.issn.1000-3428.0066372
|
8 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2021: 13708-13717.
|
9 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 580-587.
|
10 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
11 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
12 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 6517-6525.
|
13 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 6517-6525.
|
14 |
|
15 |
|
16 |
|
17 |
王朕, 李豪, 严冬梅, 等. 基于改进YOLOv5的路面病害检测模型. 计算机工程, 2023, 49 (2): 15- 23.
doi: 10.19678/j.issn.1000-3428.0064924
|
|
WANG Z , LI H , YAN D M , et al. Pavement disease detection model based on improved YOLOv5. Computer Engineering, 2023, 49 (2): 15- 23.
doi: 10.19678/j.issn.1000-3428.0064924
|
18 |
李松江, 耿兰兰, 王鹏. 基于改进Yolov4的车辆目标检测. 计算机工程, 2023, 49 (4): 272- 280.
doi: 10.13364/j.issn.1672-6510.20220180
|
|
LI S J , GENG LL , WANG P . Vehicle target detection based on improved Yolov4. Computer Engineering, 2023, 49 (4): 272- 280.
doi: 10.13364/j.issn.1672-6510.20220180
|
19 |
贵向泉, 刘世清, 李立, 等. 基于改进YOLOv8的景区行人检测算法. 计算机工程, 2024, 50 (7): 342- 351.
doi: 10.19678/j.issn.1000-3428.0068125
|
|
GUI X Q , LIU S Q , LI l , et al. Pedestrian detection algorithm for scenic spots based on improved YOLOv8. Computer Engineering, 2024, 50 (7): 342- 351.
doi: 10.19678/j.issn.1000-3428.0068125
|
20 |
WANG G , CHEN Y F , AN P , et al. UAV-YOLOv8: a small-object-detection model based of improved YOLOv8 for UAV aerial photography scenarios. Sensors, 2023, 23 (16): 7190.
doi: 10.3390/s23167190
|
21 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 2117-2125.
|
22 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
23 |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 1577-1586.
|
24 |
CHEN J R, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2023: 12021-12031.
|
25 |
ZHU X K, LYU S C, WANG X, et al. TPH ‐YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone‐captured scenarios[C]//Proceedings of IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Washington D. C., USA: IEEE Press, 2021: 2778-2788.
|
26 |
ZHANG J M , ZOU X , KUANG Y , et al. CCTSDB 2021: a more comprehensive traffic sign detection benchmark. Human-centric Computing and Information Sciences, 2022, 12 (23): 11- 19.
|
27 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision(ICCV). Washington D. C., USA: IEEE Press, 2017: 2999-3007.
|
28 |
PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: towards balanced learning for object detection[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Washington D. C., USA: IEEE Press, 2019: 821-830.
|
29 |
SUN P, ZHANG R, JIANG Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Washington D. C., USA: IEEE Press, 2021: 14449-14458.
|
30 |
CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6154-6162.
|
31 |
REN K , HUANG L , FAN C Q , et al. Real-time traffic sign detection network using DS-DetNet and lite fusion FPN. Journal of Real-Time Image Processing, 2021, 18 (6): 2181- 2191.
doi: 10.1007/s11554-021-01102-1
|