1 |
WANG W G, LAI Q X, FU H Z, et al. Salient object detection in the deep learning era: an in-depth survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 3239- 3259.
doi: 10.1109/TPAMI.2021.3051099
|
2 |
WANG L J, LU H C, WANG Y F, et al. Learning to detect salient objects with image-level supervision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 136-145.
|
3 |
LU X, YUAN Y L, LIU X, et al. Low-light salient object detection by learning to highlight the foreground objects. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(8): 7712- 7724.
doi: 10.1109/TCSVT.2024.3377108
|
4 |
MA M C, XIA C Q, LI J. Pyramidal feature shrinking for salient object detection. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(3): 2311- 2318.
doi: 10.1609/aaai.v35i3.16331
|
5 |
YANG S, LIN W S, LIN G S, et al. Progressive self-guided loss for salient object detection. IEEE Transactions on Image Processing, 2021, 30, 8426- 8438.
doi: 10.1109/TIP.2021.3113794
|
6 |
VU T H, JAIN H, BUCHER M, et al. ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 2517-2526.
|
7 |
张晴, 左保川, 石艳娇, 等. 多尺度卷积神经网络显著物体检测. 中国图象图形学报, 2020, 25(6): 1116- 1129.
|
|
ZHANG Q, ZUO B C, SHI Y J, et al. Multi-scale convolutional neural network for salient object detection. Journal of Image and Graphics, 2020, 25(6): 1116- 1129.
|
8 |
刘迪, 郭继昌, 汪昱东, 等. 融合注意力机制的多尺度显著性目标检测网络. 西安电子科技大学学报, 2022, 49(4): 118- 126.
|
|
LIU D, GUO J C, WANG Y D, et al. Multi-scale salient object detection network combining attention mechanism. Journal of Xidian University, 2022, 49(4): 118- 126.
|
9 |
WU Y H, LIU Y, ZHANG L, et al. EDN: salient object detection via extremely-downsampled network. IEEE Transactions on Image Processing, 2022, 31, 3125- 3136.
doi: 10.1109/TIP.2022.3164550
|
10 |
MA M C, XIA C Q, XIE C X, et al. Boosting broader receptive fields for salient object detection. IEEE Transactions on Image Processing, 2023, 32, 1026- 1038.
doi: 10.1109/TIP.2022.3232209
|
11 |
GAO S Y, ZHANG W, WANG Y, et al. Weakly-supervised salient object detection using point supervision. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(1): 670- 678.
doi: 10.1609/aaai.v36i1.19947
|
12 |
|
13 |
LIN X R, WU Z Y, CHEN G Q, et al. A causal debiasing framework for unsupervised salient object detection. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(2): 1610- 1619.
doi: 10.1609/aaai.v36i2.20052
|
14 |
穆楠. 夜间场景下显著目标检测方法研究[D]. 武汉: 武汉科技大学, 2019.
|
|
MU N. Research on detection method of salient targets in night scene[D]. Wuhan: Wuhan University of Science and Technology, 2019. (in Chinese)
|
15 |
LI R, JIAO Q F, CAO W M, et al. Model adaptation: unsupervised domain adaptation without source data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 9641-9650.
|
16 |
YOU F M, LI J J, ZHU L, et al. Domain adaptive semantic segmentation without source data[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 3293-3302.
|
17 |
CHEN Y X, LIN M W, HE Z, et al. Consistency-and dependence-guided knowledge distillation for object detection in remote sensing images. Expert Systems with Applications, 2023, 229, 120519.
doi: 10.1016/j.eswa.2023.120519
|
18 |
TANG Y H, CHEN W F, LUO Y J, et al. Humble teachers teach better students for semi-supervised object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2021: 3132-3141.
|
19 |
XIE Q Z, LUONG M T, HOVY E, et al. Self-training with noisy student improves ImageNet classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 10687-10698.
|
20 |
LI C, CHEN W, LUO X, et al. Adaptive pseudo labeling for source-free domain adaptation in medical image segmentation[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D. C., USA: IEEE Press, 2022: 1091-1095.
|
21 |
QI Y L, YANG Z, SUN W H, et al. A comprehensive overview of image enhancement techniques. Archives of Computational Methods in Engineering, 2022, 29(1): 583- 607.
doi: 10.1007/s11831-021-09587-6
|
22 |
KAPOOR K, ARORA S. Colour image enhancement based on histogram equalization. Electrical&Computer Engineering, 2015, 4(3): 73- 82.
|
23 |
LEE J, PANT S R, LEE H S. An adaptive histogram equalization based local technique for contrast preserving image enhancement. The International Journal of Fuzzy Logic and Intelligent Systems, 2015, 15(1): 35- 44.
doi: 10.5391/IJFIS.2015.15.1.35
|
24 |
VIBASHAN V, VALANARASU J M J, PATEL V M. Target and task specific source-free domain adaptive image segmentation[EB/OL]. [2024-03-02]. https://arxiv.org/abs/2203.15792.
|
25 |
MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Conference on 3D Vision (3DV). Washington D. C., USA: IEEE Press, 2016: 565-571.
|
26 |
WU Z, SU L, HUANG Q M. Stacked cross refinement network for edge-aware salient object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2019: 7264-7273.
|
27 |
WU Z, SU L, HUANG Q M. Cascaded partial decoder for fast and accurate salient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 3907-3916.
|
28 |
CHEN Z Y, XU Q Q, CONG R M, et al. Global context-aware progressive aggregation network for salient object detection. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 10599- 10606.
doi: 10.1609/aaai.v34i07.6633
|
29 |
WEI J, WANG S H, HUANG Q M. F3Net: fusion, feedback and focus for salient object detection. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12321- 12328.
doi: 10.1609/aaai.v34i07.6916
|
30 |
WEI J, WANG S H, WU Z, et al. Label decoupling framework for salient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 13025-13034.
|
31 |
ZHAO Z R, XIA C Q, XIE C X, et al. Complementary trilateral decoder for fast and accurate salient object detection[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 4967-4975.
|
32 |
ZHU H W, LI P, XIE H R, et al. I can find you!Boundary-guided separated attention network for camouflaged object detection. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(3): 3608- 3616.
doi: 10.1609/aaai.v36i3.20273
|
33 |
YU S Y, ZHANG B F, XIAO J M, et al. Structure-consistent weakly supervised salient object detection with local saliency coherence. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3234- 3242.
doi: 10.1609/aaai.v35i4.16434
|
34 |
PIAO Y R, WU W, ZHANG M, et al. Noise-sensitive adversarial learning for weakly supervised salient object detection. IEEE Transactions on Multimedia, 2023, 25, 2888- 2897.
doi: 10.1109/TMM.2022.3152567
|
35 |
WANG Y F, ZHANG W B, WANG L J, et al. Multi-source uncertainty mining for deep unsupervised saliency detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2022: 11727-11736.
|
36 |
CHEN C, LIU Q D, JIN Y M, et al. Source-free domain adaptive fundus image segmentation with denoised pseudo-labeling[C]//Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer International Publishing, 2021: 225-235.
|