1 |
施巍松, 张星洲, 王一帆, 等. 边缘计算: 现状与展望. 计算机研究与发展, 2019, 56(1): 69- 89.
|
|
SHI W S, ZHANG X Z, WANG Y F, et al. Edge computing: state-of-the-art and future directions. Journal of Computer Research and Development, 2019, 56(1): 69- 89.
|
2 |
XU W, TAO Y D, GUAN X. The landscape of Industrial Control Systems(ICS) devices on the Internet[C]//Proceedings of International Conference on Cyber Situational Awareness, Data Analytics and Assessment. Washington D. C., USA: IEEE Press, 2018: 1-8.
|
3 |
|
4 |
CHOUHAN S. Energy optimal partial computation offloading framework for mobile devices in multi-access edge computing[C]//Proceedings of International Conference on Software, Telecommunications and Computer Networks. Washington D. C., USA: IEEE Press, 2019: 1-6.
|
5 |
王婷婷, 甘臣权, 张祖凡. 面向工业物联网的移动边缘计算研究综述. 计算机应用与软件, 2023, 40(1): 1-10, 65.
|
|
WANG T T, GAN C Q, ZHANG Z F. Review on mobile edge computing for industrial Internet of Things. Computer Applications and Software, 2023, 40(1): 1-10, 65.
|
6 |
KAO Y H, KRISHNAMACHARI B, RA M R, et al. Hermes: latency optimal task assignment for resource-constrained mobile computing[C]//Proceedings of IEEE Conference on Computer Communications. Washington D. C., USA: IEEE Press, 2015: 1894-1902.
|
7 |
YOU C S, HUANG K B, CHAE H, et al. Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Transactions on Wireless Communications, 2017, 16(3): 1397- 1411.
doi: 10.1109/TWC.2016.2633522
|
8 |
战俊伟, 庄毅. 基于能耗与延迟优化的移动边缘计算任务卸载模型及算法. 计算机与现代化, 2022,(8): 86- 93.
|
|
ZHAN J W, ZHUANG Y. Mobile edge computing task offloading model and algorithm based on energy consumption and delay optimization. Computer and Modernization, 2022,(8): 86- 93.
|
9 |
陈璐, 汤红波, 游伟, 等. 移动边缘计算安全防御研究. 网络与信息安全学报, 2021, 7(1): 130- 142.
|
|
CHEN L, TANG H B, YOU W, et al. Research on security defense of mobile edge computing. Chinese Journal of Network and Information Security, 2021, 7(1): 130- 142.
|
10 |
宋宇波, 金星妤, 燕锋, 等. 车联网中移动边缘计算的安全高效节能卸载策略. 清华大学学报(自然科学版), 2021, 61(11): 1246- 1253.
|
|
SONG Y B, JIN X Y, YAN F, et al. Secure and energy efficient offloading of mobile edge computing in the Internet of vehicles. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1246- 1253.
|
11 |
HUANG Z Y, XIA G M, WANG Z H, et al. Survey on edge computing security[C]//Proceedings of International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering. Washington D. C., USA: IEEE Press, 2020: 96-105.
|
12 |
张晓东, 张朝昆, 赵继军. 边缘智能研究进展. 计算机研究与发展, 2023, 60(12): 2749-2764, 2769.
|
|
ZHANG X D, ZHANG C K, ZHAO J J. Research progress of edge intelligence. Computer Research and Development, 2023, 60(12): 2749-2764, 2769.
|
13 |
ALZAHRANI R J, ALZAHRANI A. Security analysis of DDoS attacks using machine learning algorithms in networks traffic. Electronics, 2021, 10(23): 2919.
doi: 10.3390/electronics10232919
|
14 |
董瑞洪, 闫厚华, 张秋余, 等. 基于深度森林算法的分布式WSN入侵检测模型. 兰州理工大学学报, 2020, 46(4): 103- 109.
|
|
DONG R H, YAN H H, ZHANG Q Y, et al. Distributed WSN intrusion detection model based on deep forest algorithm. Journal of Lanzhou University of Technology, 2020, 46(4): 103- 109.
|
15 |
田婷, 虞延坤, 牛新征. 边缘计算环境下基于深度学习的DDos检测. 计算机测量与控制, 2023, 31(7): 28-34, 168.
|
|
TIAN T, YU Y K, NIU X Z. DDos detection based on deep learning in edge computing environment. Computer Measurement & Control, 2023, 31(7): 28-34, 168.
|
16 |
SINGH P, JAYKUMAR J, PANKAJ A, et al. Edge-detect: edge-centric network intrusion detection using deep neural network[C]//Proceedings of the 18th Annual Consumer Communications and Networking Conference. Washington D. C., USA: IEEE Press, 2021: 1-6.
|
17 |
李晓佳, 赵国生, 汪洋, 等. 面向CNN和RNN改进的物联网入侵检测模型. 计算机工程与应用, 2023, 59(14): 242- 250.
|
|
LI X J, ZHAO G S, WANG Y, et al. Improved intrusion detection model of Internet of Things for CNN and RNN. Computer Engineering and Applications, 2023, 59(14): 242- 250.
|
18 |
DORIGUZZI-CORIN R, MILLAR S, SCOTT-HAYWARD S, et al. LUCID: a practical, lightweight deep learning solution for DDoS attack detection. IEEE Transactions on Network and Service Management, 2020, 17(2): 876- 889.
doi: 10.1109/TNSM.2020.2971776
|
19 |
KIRANYAZ S, AVCI O, ABDELJABER O, et al. 1D convolutional neural networks and applications: a survey. Mechanical Systems and Signal Processing, 2021, 151, 107398.
doi: 10.1016/j.ymssp.2020.107398
|
20 |
KIRANYAZ S, GASTLI A, BEN-BRAHIM L, et al. Real-time fault detection and identification for MMC using 1-D convolutional neural networks. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8760- 8771.
doi: 10.1109/TIE.2018.2833045
|
21 |
刘达山, 刘潞琦, 张光驰, 等. 基于深度学习的Attention机制文献综述. 信息技术与信息化, 2023,(1): 189- 194.
|
|
LIU D S, LIU L Q, ZHANG G C, et al. Literature review of attention mechanism based on deep learning. Information Technology and Informatization, 2023,(1): 189- 194.
|
22 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11531-11539.
|
23 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of ECCV 2018. Berlin, Germany: Springer, 2018: 1-10.
|
24 |
SHARAFALDIN I, LASHKARI A H, HAKAK S, et al. Developing realistic Distributed Denial of Service(DDoS) attack dataset and taxonomy[C]//Proceedings of 2019 International Carnahan Conference on Security Technology. Washington D. C., USA: IEEE Press, 2019: 1-10.
|
25 |
李忠成, 高惠燕, 张文祥. 边缘计算中改进ELM的高效入侵检测算法. 计算机测量与控制, 2021, 29(7): 223-228, 234.
|
|
LI Z C, GAO H Y, ZHANG W X. An efficient edge computing intrusion detection algorithm based on improved ELM. Computer Measurement & Control, 2021, 29(7): 223-228, 234.
|
26 |
MYNENI S, CHOWDHARY A, HUANG D J, et al. SmartDefense: a distributed deep defense against DDoS attacks with edge computing. Computer Networks, 2022, 209, 108874.
doi: 10.1016/j.comnet.2022.108874
|
27 |
HUANG H C, YE P X, HU M, et al. A multi-point collaborative DDoS defense mechanism for IIoT environment. Digital Communications and Networks, 2023, 9(2): 590- 601.
doi: 10.1016/j.dcan.2022.04.008
|