| 1 | 胡帅, 李华玲, 郝德琛. 改进U-Net的多级边缘增强医学图像分割网络. 计算机工程, 2024, 50(4): 286- 293.  URL
 | 
																													
																							|  | HU S, LI H L, HAO D C. Improved U-Net multi-level edge enhanced medical image segmentation network. Computer Engineering, 2024, 50(4): 286- 293.  URL
 | 
																													
																							| 2 | SHEN W H, XU W B, ZHANG H Y, et al. Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net. Inverse Problems & Imaging, 2021, 15(6): 1333. | 
																													
																							| 3 | XIONG Z H, XIA Q, HU Z Q, et al. A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Medical Image Analysis, 2021, 67, 101832.  doi: 10.1016/j.media.2020.101832
 | 
																													
																							| 4 |  | 
																													
																							| 5 |  | 
																													
																							| 6 | PEIRIS H, CHEN Z L, EGAN G, et al. Duo-SegNet: adversarial dual-views for semi-supervised medical image segmentation[EB/OL]. [2023-07-05]. https://arxiv.org/abs/2108.11154 . | 
																													
																							| 7 | 刘少鹏, 洪佳明, 梁杰鹏, 等. 面向医学图像分割的半监督条件生成对抗网络. 软件学报, 2020, 31(8): 2588- 2602.  URL
 | 
																													
																							|  | LIU S P, HONG J M, LIANG J P, et al. Medical image segmentation using semi-supervised conditional generative adversarial nets. Journal of Software, 2020, 31(8): 2588- 2602.  URL
 | 
																													
																							| 8 | TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[EB/OL]. [2023-07-05]. http://arxiv.org/abs/1703.01780v6 . | 
																													
																							| 9 | YU L Q, WANG S J, LI X M, et al. Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation[EB/OL]. [2023-07-05]. https://arxiv.org/abs/1907.07034 . | 
																													
																							| 10 | LUO X D, WANG G T, LIAO W J, et al. Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency. Medical Image Analysis, 2022, 80, 102517.  doi: 10.1016/j.media.2022.102517
 | 
																													
																							| 11 | WU Y C, GE Z Y, ZHANG D H, et al. Mutual consistency learning for semi-supervised medical image segmentation. Medical Image Analysis, 2022, 81, 102530.  doi: 10.1016/j.media.2022.102530
 | 
																													
																							| 12 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141. | 
																													
																							| 13 | WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11534-11542. | 
																													
																							| 14 |  | 
																													
																							| 15 |  | 
																													
																							| 16 | 郭祥振, 李思潼, 卢锐, 等. 基于多任务联合注意力的结肠息肉分割网络. 计算机工程, 2024, 50(2): 327- 336.  URL
 | 
																													
																							|  | GUO X Z, LI S T, LU R, et al. Colon polyp segmentation network based on multitasking attention and joint attention mechanism. Computer Engineering, 2024, 50(2): 327- 336.  URL
 | 
																													
																							| 17 | PETIT O, THOME N, RAMBOUR C, et al. U-Net transformer: self and cross attention for medical image segmentation[EB/OL]. [2023-07-05]. https://arxiv.org/abs/2103.06104 . | 
																													
																							| 18 | ZHAO C J, XIANG S, WANG Y Q, et al. Context-aware network fusing transformer and V-Net for semi-supervised segmentation of 3D left atrium. Expert Systems with Applications, 2023, 214, 119105.  doi: 10.1016/j.eswa.2022.119105
 | 
																													
																							| 19 | ZHU Y, YANG J, LIU S Q, et al. Inherent consistent learning for accurate semi-supervised medical image segmentation[EB/OL]. [2023-07-05]. http://arxiv.org/abs/2303.14175v4 . | 
																													
																							| 20 | LUO X D, HU M H, SONG T, et al. Semi-supervised medical image segmentation via cross teaching between CNN and Transformer[EB/OL]. [2023-07-05]. http://arxiv.org/abs/2112.04894v2 . | 
																													
																							| 21 |  | 
																													
																							| 22 | CUI W H, LIU Y L, LI Y X, et al. Semi-supervised brain lesion segmentation with an adapted mean teacher model[EB/OL]. [2023-07-05]. https://arxiv.org/abs/1903.01248 . | 
																													
																							| 23 |  | 
																													
																							| 24 |  | 
																													
																							| 25 | BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?. IEEE Transactions on Medical Imaging, 2018, 37(11): 2514- 2525.  doi: 10.1109/TMI.2018.2837502
 | 
																													
																							| 26 |  | 
																													
																							| 27 | WU Y C, XU M F, GE Z Y, et al. Semi-supervised left atrium segmentation with mutual consistency training[EB/OL]. [2023-07-05]. https://arxiv.org/abs/2103.02911 . | 
																													
																							| 28 | VERMA V, KAWAGUCHI K, LAMB A, et al. Interpolation consistency training for semi-supervised learning. Neural Networks, 2022, 145, 90- 106.  doi: 10.1016/j.neunet.2021.10.008
 |