作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2018, Vol. 44 ›› Issue (7): 291-296. doi: 10.19678/j.issn.1000-3428.0046830

• 开发研究与工程应用 • 上一篇    下一篇

一种基于局部特征的PCNN电力故障区域提取方法

谷凯凯 1,2,周东国 3,许晓路 1,2,蔡炜 1,2,周正钦 1,2,胡文山 3,黄华 4   

  1. 1.国网电力科学研究院武汉南瑞有限责任公司,武汉 430074; 2.国网电力科学研究院南京南瑞集团公司,南京 211000; 3.武汉大学 动力与机械学院,武汉 430072; 4.国网上海市电力公司,上海 200120
  • 收稿日期:2017-04-17 出版日期:2018-07-15 发布日期:2018-07-15
  • 作者简介:谷凯凯(1987—),男,工程师、博士,主研方向为现场故障检测与诊断;周东国(通信作者),讲师、博士;许晓路,工程师、硕士;蔡炜,研究员;周正钦,工程师、硕士;胡文山,副教授、博士;黄华,工程师、硕士。
  • 基金资助:

    国家电网公司总部科技项目“基于移动应用平台的设备状态数据流录入技术研究与试点应用”(524606160034)。

Extraction Method of PCNN Electronic Equipment Fault Region Based on Local Feature

GU Kaikai  1,2,ZHOU Dongguo  3,XU Xiaolu  1,2,CAI Wei  1,2,ZHOU Zhengqin  1,2,HU Wenshan  3,HUANG Hua  4   

  1. 1.Wuhan NARI Limited Liability Company of State Grid Electric Power Research Institute,Wuhan 430074, China; 2.Nanjing NARI Group Corporation of State Grid Electric Power Research Institute,Nanjing 211000, China; 3.College of Power and Mechanical Engineering,Wuhan University,Wuhan 430072, China; 4.State Grid Shanghai Electric Power Company,Shanghai 200120, China
  • Received:2017-04-17 Online:2018-07-15 Published:2018-07-15

摘要:

为有效提取红外图像中电气设备的故障或异常区域,提出一种新的红外图像故障区域提取方法。以脉冲耦合神经网络(PCNN)同步点火机理为依据,通过简化其内部参数,同时在参数优化配置下结合故障区域和非故障区域邻域边界的局部特征,设置PCNN模型迭代结束规则,从而使模型能进行自适应迭代,并获取红外图像故障区域。针对实际的红外检测图像进行实验,结果表明,与Otsu、k-means、分水岭及改进的PCNN方法相比,该方法具有较好的故障区域提取性能。

关键词: 红外检测, 脉冲耦合神经网络模型, 故障区域, 同步点火, 局部特征

Abstract:

In order to extract the fault and abnormal electronic equipment in infrared image,this paper presents a new method to extract the fault region in the infrared image.Based on the mechanism of synchronize pulse of Pulse Coupled Neural Network(PCNN),the inner parameters are simplified partly.At the same time,the local feature of the neighborhood of fault area and non-fault area are combined with parameter optimization configuration,and the stop rule for PCNN model iteration is set,so that the model can adaptively iterate and get the infrared image fault area.According to the actual infrared detection image,experimental results show that compared with Otsu,k-means,watershed and improved PCNN methods,the proposed method has better fault area extraction performance.

Key words: infrared detection, Pulse Coupled Neural Network(PCNN) model, fault region, synchronize pulse, local feature

中图分类号: