[1] 李幼蛟, 卓力, 张菁, 等.行人再识别技术综述[J].自动化学报, 2018, 44(9):1554-1568. LI Y J, ZHUO L, ZHANG J, et al.Overview of person re-identification technology[J].Acta Automatica Sinica, 2018, 44(9):1554-1568.(in Chinese) [2] LIAO S, HU Y, ZHU X, et al.Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:2197-2206. [3] 姜国权, 肖禛禛, 霍占强.基于RGB与灰度信息融合的行人再识别方法[J].计算机工程, 2021, 47(4):226-233, 240. JIANG G Q, XIAO Z Z, HUO Z Q.Person re-identification based on the fusion of RGB and grayscale information[J].Computer Engineering, 2021, 47(4):226-233, 240.(in Chinese) [4] ZHENG L, YANG Y, HAUPTMANN A G.Person re-identification:past, present and future[EB/OL].[2020-11-02].https://arxiv.org/pdf/1610.02984.pdf. [5] LIN Y, ZHENG L, ZHENG Z, et al.Improving person re-identification by attribute and identity learning[J].Pattern Recognition, 2019, 95:151-161. [6] HERMANS A, BEYER L, LEIBE B.In defense of the triplet loss for person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1-15. [7] ZHENG Z, YANG X, YU Z, et al.Joint discriminative and generative learning for person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:2138-2147. [8] ZHONG Z, ZHENG L, CAO D, et al.Re-ranking person re-identification with k-reciprocal encoding[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1318-1327. [9] 罗浩, 姜伟, 范星, 等.基于深度学习的行人重识别研究进展[J].自动化学报, 2019, 45(11):2032-2049. LUO H, JIANG W, FAN X, et al.Research progress of person re-identification based on deep learning[J].Acta Automatica Sinica, 2019, 45(11):2032-2049.(in Chinese) [10] ZHAO H, TIAN M, SUN S, et al.Spindle Net:person re-identification with human body region guided feature decomposition and fusion[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1077-1085. [11] ZHENG L, HUANG Y, LU H, et al.Pose-invariant embedding for deep person re-identification[J].IEEE Transactions on Image Processing, 2019, 28(9):4500-4509. [12] 刘紫燕, 万佩佩.基于注意力机制的行人重识别特征提取方法[J].计算机应用, 2020, 40(3):672-676. LIU Z Y, WAN P P.Person re-identification feature extraction method based on attention mechanism[J].Journal of Computer Applications, 2020, 40(3):672-676.(in Chinese) [13] CHEN T, DING S, XIE J, et al.Abd-Net:attentive but diverse person re-identification[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:8351-8361. [14] SUN Y, ZHENG L, YANG Y, et al.Beyond part models:person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the European Conference on Computer Vision.Berlin, Germany:Springer, 2018:480-496. [15] WANG G, YUAN Y, CHEN X, et al.Learning discriminative features with multiple granularities for person re-identification[C]//Proceedings of the 26th ACM International Conference on Multimedia.New York, USA:ACM Press, 2018:274-282. [16] SZEGEDY C, VANHOUCKE V, IOFFE S, et al.Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:2818-2826. [17] ZHENG L, SHEN L, TIAN L, et al.Scalable person re-identification:a benchmark[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1116-1124. [18] RISTANI E, SOLERA F, ZOU R, et al.Performance measures and a data set for multi-target, multi-camera tracking[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:17-35. [19] LI W, ZHAO R, XIAO T, et al.Deepreid:deep filter pairing neural network for person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:152-159. [20] WEI L, ZHANG S, GAO W, et al.Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:79-88. [21] FELZENSZWALB P, MCALLESTER D, RAMANAN D.A discriminatively trained, multiscale, deformable part model[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2008:1-8. [22] REN S, HE K, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39:1137-1149. [23] SUN Y, ZHENG L, DENG W, et al.SVDNet for pedestrian retrieval[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:3800-3808. [24] SUH Y, WANG J, TANG S, et al.Part-aligned bilinear representations for person re-identification[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:402-419. [25] CHANG X, HOSPEDALES T M, XIANG T.Multi-level factorisation net for person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:2109-2118. [26] LI W, ZHU X, GONG S.Harmonious attention network for person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:2285-2294. [27] TAY C P, ROY S, YAP K H.AANet:attribute attention network for person re-identifications[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:7134-7143. [28] ZHENG M, KARANAM S, WU Z, et al.Re-identification with consistent attentive siamese networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:5735-5744. [29] HOU R, MA B, CHANG H, et al.Interaction-and-aggregation network for person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:9317-9326. [30] YANG W, HUANG H, ZHANG Z, et al.Towards rich feature discovery with class activation maps augmentation for person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:1389-1398. [31] ZHANG Z, LAN C, ZENG W, et al.Densely semantically aligned person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:667-676. [32] ZHENG F, DENG C, SUN X, et al.Pyramidal person re-identification via multi-loss dynamic training[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:8514-8522. [33] QUAN R, DONG X, WU Y, et al.Auto-reid:searching for a part-aware convNet for person re-identification[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:3750-3759. [34] ZHOU K, YANG Y, CAVALLARO A, et al.Omni-scale feature learning for person re-identification[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:3702-3712. [35] ALEMU L T, PELILLO M, SHAH M.Deep constrained dominant sets for person re-identification[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:9855-9864. [36] CHEN B, DENG W, HU J.Mixed high-order attention network for person re-identification[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:371-381. [37] GUO J, YUAN Y, HUANG L, et al.Beyond human parts:dual part-aligned representations for person re-identification[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:3642-3651. [38] DAI Z, CHEN M, GU X, et al.Batch dropblock network for person re-identification and beyond[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:3691-3701. [39] HE L, WANG Y, LIU W, et al.Foreground-aware pyramid reconstruction for alignment-free occluded person re-identification[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:8450-8459. [40] SU C, LI J, ZHANG S, et al.Pose-driven deep convolutional model for person re-identification[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:3960-3969. [41] WEI L, ZHANG S, YAO H, et al.GLAD:global-local-alignment descriptor for pedestrian retrieval[C]//Proceedings of the 25th ACM International Conference on Multimedia.New York, USA:ACM Press, 2017:420-428. |