作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2013, Vol. 39 ›› Issue (6): 236-238,243. doi: 10.3969/j.issn.1000-3428.2013.06.052

• 人工智能及识别技术 • 上一篇    下一篇

基于特定局部特征布局的视频运动目标挖掘

马 超1,2,沈 微1,董景峰1   

  1. (1. 东北林业大学工程技术学院,哈尔滨 150040;2. 哈尔滨工业大学计算机科学与技术学院,哈尔滨 150001)
  • 收稿日期:2012-07-02 出版日期:2013-06-15 发布日期:2013-06-14
  • 作者简介:马 超(1979-),男,讲师、博士研究生,主研方向:数据挖掘,数据可视化,物流信息技术;沈 微、董景峰,讲师、博士
  • 基金资助:
    中央高校基本科研业务费专项基金资助项目“物联网中非结构化数据流的数据挖掘方法研究”(DL11BB21);黑龙江省教育厅科学技术研究基金资助项目“智能供应链中非结构化数据流的数据挖掘算法研究”(12513014)

Video Moving Objects Mining Based on Distinctive Local Feature Configuration

MA Chao 1,2, SHEN Wei 1, DONG Jing-feng 1   

  1. (1. College of Engineering and Technology, Northeast Forestry University, Harbin 150040, China; 2. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China)
  • Received:2012-07-02 Online:2013-06-15 Published:2013-06-14

摘要: 针对局部特征描述子的高维特性以及视频中的复杂场景,提出一种利用频繁出现的特定局部特征空间布局对视频中运动目标进行挖掘的方法。在运动分割辅助下实现局部特征筛选,仅保留特定的运动相关特征,采用一种非参数维度约减方法建立精简描述子,并通过新的事务构建方式完成挖掘过程。标准数据集上的对比实验结果表明,该精简描述子在95%灵敏度情况下只有不到7%的假阳性率,整个挖掘方法相比同类方法具有更好的挖掘性能和可扩展性。

关键词: 局部特征, 特征布局, 视频挖掘, 特征筛选, 运动目标, 维度约减

Abstract: According to the requirements of coping with high dimensionality of local feature descriptors and clutter of video scenes, a new method of mining moving objects in videos using repetitive distinctive local feature configuration is proposed. Local features are filtered with motion segmentation aid, only the motion related descriptors are remained, and the condensed descriptors are constructed with a no parametric dimensionality reduction method. The final mining procedure is completed by a new transaction construction mechanism. Comparative test conducted on standard datasets demonstrates that the condensed descriptor gives 95% true positive at less than 7% false positive, and the whole mining method can exceed the mining performance and scalability of current state of the art techniques.

Key words: local feature, feature configuration, video mining, feature filtration, moving objects, dimension reduction

中图分类号: