[1] GENG M Y, WANG Y W, XIANG T, et al.Deep transfer learning for person re-identification[EB/OL].[2020-10-05].https://arxiv.org/abs/1611.05244. [2] CHENG D, GONG Y H, ZHOU S P, et al.Person re-identification by multichannel parts-based CNN with improved triplet loss function[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1335-1344. [3] SUN Y F, CHENG C M, ZHANG Y H, et al.Circle loss:a unified perspective of pair similarity optimization[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1-10. [4] 姜国权, 肖禛禛, 霍占强.融合RGB与灰度图像特征的行人再识别方法[J].计算机工程, 2020, 47(4):226-233, 240. JIANG G Q, XIAO Z Z, HUO Z Q.Pedestrian re-identification method combining RGB and grayscale image features[J].Computer Engineering, 2020, 47(4):226-233, 240.(in Chinese) [5] QIAN X L, FU Y W, WANG W X, et al.Pose-normalized image generation for person re-identification[EB/OL].[2020-10-08].https://arxiv.org/abs/1712.02225v6. [6] CHEN B H, DENG W H, HU J N.Mixed high-order attention network for person re-identification[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:1-10. [7] FANG P F, ZHOU J M, ROY S, et al.Bilinear attention networks for person retrieval[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:8030-8039. [8] FU Y, WANG X Y, WEI Y C, et al.STA:spatial-temporal attention for large-scale video-based person re-identification[EB/OL].[2020-10-05].https://arxiv.org/pdf/1811.04129.pdf. [9] LI S, BAK S, CARR P, et al.Diversity regularized spatiotemporal attention for video-based person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:369-378. [10] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19. [11] WANG F, JIANG M Q, QIAN C, et al.Residual attention network for image classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:3156-3164. [12] ZHANG Z, LAN C, ZENG W, et al.Relation-aware global attention for person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:3186-3195. [13] SUN Y F, ZHENG L, YANG Y, et al.Beyond part models:person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:480-496. [14] 董亚超, 刘宏哲, 徐成.基于显著性多尺度特征协作融合的行人重识别方法[J].计算机工程, 2021, 47(6):234-244, 252. DONG Y C, LIU H Z, XU C.Person re-identification method based on saliency multi-scale feature collaborative fusion[J].Computer Engineering, 2021, 47(6):234-244, 252.(in Chinese) [15] WEI L H, ZHANG S L, YAO H T, et al.Glad:global-local-alignment descriptor for pedestrian retrieval[C]//Proceedings of the 25th ACM International Conference on Multimedia.New York, USA:ACM Press, 2017:420-428. [16] PARK H, HAM B.Relation network for person re-identification[EB/OL].[2020-10-06].https://arxiv.org/abs/1911.09318v2. [17] 廖华年, 徐新.基于注意力机制的跨分辨率行人重识别[J].北京航空航天大学学报, 2021, 47(3):605-612. LIAO H N, XU X.Cross-resolution person re-identification based on attention mechanism[J].Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3):605-612.(in Chinese) [18] 徐龙壮, 彭力, 朱凤增.多任务金字塔重叠匹配的行人重识别方法[J].计算机工程, 2021, 47(1):239-245, 254. XU L Z, PENG L, ZHU F Z.Person re-identification method based on multi-task pyramid overlapping matching[J].Computer Engineering, 2021, 47(1):239-245, 254(in Chinese). [19] FU Y, WEI Y C, ZHOU Y Q, et al.Horizontal pyramid matching for person re-identification[EB/OL].[2020-10-07].https://arxiv.org/abs/1804.05275. [20] LI W, ZHAO R, XIAO T, et al.Deepreid:deep filter pairing neural network for person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:152-159. [21] ZHENG L, SHEN L Y, TIAN L, et al.Scalable person re-identification:a benchmark[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1116-1124. [22] RISTANI E, SOLERA F, ZOU R, et al.Performance measures and a data set for multi-target, multi-camera tracking[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:17-35. [23] WANG G, YUAN Y, CHEN X, et al.Learning discriminative features with multiple granularities for person re-identification[C]//Proceedings of the 26th ACM International Conference on Multimedia.New York, USA:ACM Press, 2018:274-282. [24] ZHANG Z, LAN C, ZENG W, et al.Densely semantically aligned person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:667-676. [25] SUN Y, ZHENG L, DENG W, et al.SVDNet for pedestrian retrieval[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:3800-3808. [26] HERMANS A, BEYER L, LEIBE B.In defense of the triplet loss for person re-identification[EB/OL].[2020-10-05].https://arxiv.org/abs/1703.07737v2. [27] BAI X, YANG M, HUANG T, et al.Deep-person:learning discriminative deep features for person re-identification[EB/OL].[2020-10-05].https://arxiv.org/abs/1711.10658v4. |