1 |
TUYTELAARS T, MIKOLAJCZYK K. Local invariant feature detectors: a survey. Foundations and Trends in Computer Graphics and Vision, 2007, 3(3): 177- 280.
doi: 10.1561/0600000017
|
2 |
DAHL A L, PEDERSEN K S. Interesting interest points: a comparative study of interest point performance on a unique data set. International Journal of Computer Vision, 2012, 97, 18- 35.
doi: 10.1007/s11263-011-0473-8
|
3 |
林曦蕾. 图像局部特征匹配算法发展综述. 现代计算机, 2019,(9): 89- 93.
doi: 10.3969/j.issn.1007-1423.2019.09.018
|
|
LIN X L. Overview of image feature matching algorithm. Modern Computer, 2019,(9): 89- 93.
doi: 10.3969/j.issn.1007-1423.2019.09.018
|
4 |
|
5 |
BALNTAS V, LENC K, VEDALDI A, et al. HPatches: a benchmark and evaluation of handcrafted and learned local descriptors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 3852-3861.
|
6 |
SCHÖNBERGER J L, HARDMEIER H, SATTLER T, et al. Comparative evaluation of hand-crafted and learned local features[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: 2017: 6959-6968.
|
7 |
MA J Y, JIANG X Y, FAN A X, et al. Image matching from handcrafted to deep features: a survey. International Journal of Computer Vision, 2021, 129(1): 23- 79.
doi: 10.1007/s11263-020-01359-2
|
8 |
CHEN L, ROTTENSTEINER F, HEIPKE C. Feature detection and description for image matching: from hand-crafted design to deep learning. Geo-spatial Information Science, 2021, 24(1): 58- 74.
doi: 10.1080/10095020.2020.1843376
|
9 |
HARRIS C, STEPHENS M. A combined corner and edge detector[C]//Proceedings of the Alvey Vision Conference 1988. Manchester, UK: Alvey Vision Club, 1988: 147-151.
|
10 |
SMITH S M, BRADY J M. SUSAN-a new approach to low level image processing. International Journal of Computer Vision, 1997, 23(1): 45- 78.
doi: 10.1023/A:1007963824710
|
11 |
TRAJKOVIĆ M, HEDLEY M. Fast corner detection. Image and Vision Computing, 1998, 16(2): 75- 87.
doi: 10.1016/S0262-8856(97)00056-5
|
12 |
LOWE D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
13 |
LINDEBERG T. Feature detection with automatic scale selection. International Journal of Computer Vision, 1998, 30(2): 79- 116.
doi: 10.1023/A:1008045108935
|
14 |
李培华, 章盛, 刘玉莉, 等. 一种CSS-SIFT复合图像配准算法. 红外技术, 2021, 43(1): 26- 36.
|
|
LI P H, ZHANG S, LIU Y L, et al. CSS-SIFT composite image registration algorithm. Infrared Technology, 2021, 43(1): 26- 36.
|
15 |
MIKOLAJCZYK K, SCHMID C. Scale & affine invariant interest point detectors. International Journal of Computer Vision, 2004, 60, 63- 86.
doi: 10.1023/B:VISI.0000027790.02288.f2
|
16 |
BAY H, ESS A, TUYTELAARS T, et al. Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding, 2008, 110(3): 346- 359.
doi: 10.1016/j.cviu.2007.09.014
|
17 |
STRECHA C, LINDNER A, ALI K, et al. Training for task specific keypoint detection. Berlin, Germany: Springer, 2009.
|
18 |
HARTMANN W, HAVLENA M, SCHINDLER K. Predicting matchability[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2014: 9-16.
|
19 |
FAN B, WU F C, HU Z Y. Rotationally invariant descriptors using intensity order pooling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 2031- 2045.
doi: 10.1109/TPAMI.2011.277
|
20 |
TANG F, LIM S H, CHANG N L, et al. A novel feature descriptor invariant to complex brightness changes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2009: 2631-2638.
|
21 |
刘利锋, 马燕, 张相芬, 等. 采用二值SIFT特征描述的图像匹配方法. 计算机应用与软件, 2016, 33(12): 152-155, 210.
doi: 10.3969/j.issn.1000-386x.2016.12.037
|
|
LIU L F, MA Y, ZHANG X F, et al. Image matching method using binary SIFT feature discriptors. Computer Applications and Software, 2016, 33(12): 152-155, 210.
doi: 10.3969/j.issn.1000-386x.2016.12.037
|
22 |
KE Y, SUKTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptors[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2004: 506-513.
|
23 |
SIMONYAN K, VEDALDI A, ZISSERMAN A. Learning local feature descriptors using convex optimisation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1573- 1585.
doi: 10.1109/TPAMI.2014.2301163
|
24 |
MISHCHUK A, MISHKIN D, RADENOVIC F, et al. Working hard to know your neighbor's margins: local descriptor learning loss[EB/OL]. [2023-09-17]. http://arxiv.org/abs/1705.10872.
|
25 |
TIAN Y R, YU X, FAN B, et al. SOSNet: second order similarity regularization for local descriptor learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 11008-11017.
|
26 |
SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue: learning feature matching with graph neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 4937-4946.
|
27 |
HAN X F, LEUNG T, JIA Y Q, et al. MatchNet: Unifying feature and metric learning for patch-based matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2015: 3279-3286.
|
28 |
FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381- 395.
doi: 10.1145/358669.358692
|
29 |
PILET J, LEPETIT V, FUA P. Fast non-rigid surface detection, registration and realistic augmentation. International Journal of Computer Vision, 2008, 76, 109- 122.
doi: 10.1007/s11263-006-0017-9
|
30 |
VERDIE Y, YI K M, FUA P, et al. TILDE: a temporally invariant learned DEtector[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2015: 5279-5288.
|
31 |
ZHANG X, YU F X, KARAMAN S, et al. Learning discriminative and transformation covariant local feature detectors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 4923-4931.
|
32 |
DI FEBBO P, DAL MUTTO C, TIEU K, et al. KCNN: extremely-efficient hardware keypoint detection with a compact convolutional neural network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D.C., USA: IEEE Press, 2018: 795-7958.
|
33 |
MISHKIN D, RADENOVIĆ F, MATAS J. Repeatability is not enough: learning affine regions via discriminability. Berlin, Germany: Springer International Publishing, 2018.
|
34 |
LENC K, VEDALDI A. Learning covariant feature detectors. Berlin, Germany: Springer International Publishing, 2017.
|
35 |
SAVINOV N, SEKI A, LADICKÝ L, et al. Quad-networks: unsupervised learning to rank for interest point detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 3929-3937.
|
36 |
ZHANG L G, RUSINKIEWICZ S. Learning to detect features in texture images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 6325-6333.
|
37 |
LAGUNA A B, RIBA E, PONSA D, et al. Key. Net: keypoint detection by handcrafted and learned CNN filters[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 5835-5843.
|
38 |
TIAN Y R, BALNTAS V, NG T, et al. D2D: keypoint extraction with describe to detect approach[C]//Proceedings of the Asian Conference on Computer Vision. Berlin, Germany: Springer, 2021: 223-240.
|
39 |
LEE J, KIM B, CHO M. Self-supervised equivariant learning for oriented keypoint detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 4837-4847.
|
40 |
|
41 |
ZHANG Y J, LIU Y W, LIU J X, et al. Perspectively equivariant keypoint learning for omnidirectional images. IEEE Transactions on Image Processing, 2023, 32, 2552- 2567.
doi: 10.1109/TIP.2023.3270032
|
42 |
ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2015: 4353-4361.
|
43 |
SIMO-SERRA E, TRULLS E, FERRAZ L, et al. Discriminative learning of deep convolutional feature point descriptors[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2015: 118-126.
|
44 |
BALNTAS V, RIBA E, PONSA D, et al. Learning local feature descriptors with triplets and shallow convolutional neural networks[C]//Proceedings of the British Machine Vision Conference 2016. York, UK: British Machine Vision Association, 2016: 3.
|
45 |
TIAN Y R, FAN B, WU F C. L2-Net: deep learning of discriminative patch descriptor in Euclidean space[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 6128-6136.
|
46 |
HE K, LU Y, SCLAROFF S. Local descriptors optimized for average precision[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 596-605.
|
47 |
WEI X, ZHANG Y, GONG Y H, et al. Kernelized subspace pooling for deep local descriptors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 1867-1875.
|
48 |
LUO Z X, SHEN T W, ZHOU L, et al. GeoDesc: learning local descriptors by integrating geometry constraints[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 170-185.
|
49 |
WANG S, LI Y F, LIANG X F, et al. Better and faster: exponential loss for image patch matching[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 4811-4820.
|
50 |
ZHANG L G, RUSINKIEWICZ S. Learning local descriptors with a CDF-based dynamic soft margin[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 2969-2978.
|
51 |
TIAN Y R, BARROSO-LAGUNA A, NG T, et al. HyNet: learning local descriptor with hybrid similarity measure and triplet loss[EB/OL]. [2023-09-17]. http://arxiv.org/abs/2006.10202.
|
52 |
WANG S, GUO X, TIE Y, et al. Deep local feature descriptor learning with dual hard batch construction. IEEE Transactions on Image Processing, 2020, 29, 9572- 9583.
doi: 10.1109/TIP.2020.3029424
|
53 |
PAN H H, CHEN Y Y, HE Z Y, et al. TCDesc: learning topology consistent descriptors for image matching. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(5): 2845- 2855.
|
54 |
EBEL P, TRULLS E, YI K M, et al. Beyond Cartesian representations for local descriptors[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 253-262.
|
55 |
LUO Z X, SHEN T W, ZHOU L, et al. ContextDesc: local descriptor augmentation with cross-modality context[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 2522-2531.
|
56 |
MIKOLAJCZYK K, SCHMID C. An affine invariant interest point detector. Berlin, Germany: Springer, 2002.
|
57 |
BROWN M, HUA G, WINDER S. Discriminative learning of local image descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): 43- 57.
doi: 10.1109/TPAMI.2010.54
|
58 |
YI K M, TRULLS E, LEPETIT V, et al. LIFT: learned invariant feature transform[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 467-483.
|
59 |
|
60 |
CHAPELLE O, WU M R. Gradient descent optimization of smoothed information retrieval metrics. Information Retrieval, 2010, 13(3): 216- 235.
doi: 10.1007/s10791-009-9110-3
|
61 |
|
62 |
SHEN X L, WANG C, LI X, et al. RF-Net: an end-to-end image matching network based on receptive field[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 8124-8132.
|
63 |
DUSMANU M, ROCCO I, PAJDLA T, et al. D2-Net: a trainable CNN for joint description and detection of local features[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 8084-8093.
|
64 |
REVAUD J, DE SOUZA C, HUMENBERGER M, et al. R2D2: Reliable and repeatable detector and descriptor[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2019: 12414-12424.
|
65 |
LUO Z X, ZHOU L, BAI X Y, et al. ASLFeat: learning local features of accurate shape and localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 6588-6597.
|
66 |
|
67 |
WANG Z H, LI X Y, LI Z. Local representation is not enough: soft point-wise Transformer for descriptor and detector of local features[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence. [S. l. ]: International Joint Conferences on Artificial Intelligence Organization, 2021: 1150-1156.
|
68 |
WANG C W, XU R T, ZHANG Y Y, et al. MTLDesc: looking wider to describe better[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2022: 2388-2396.
|
69 |
ZHAO X M, WU X M, MIAO J Y, et al. ALIKE: accurate and lightweight keypoint detection and descriptor extraction. IEEE Transactions on Multimedia, 2023, 25, 3101- 3112.
doi: 10.1109/TMM.2022.3155927
|
70 |
WANG C W, XU R T, XU S B, et al. CNDesc: cross normalization for local descriptors learning. IEEE Transactions on Multimedia, 2022, 25, 3989- 4001.
|
71 |
HE J F, GAO Y, ZHANG T Z, et al. D2Former: jointly learning hierarchical detectors and contextual descriptors via agent-based Transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 2904-2914.
|
72 |
NOH H, ARAUJO A, SIM J, et al. Large-scale image retrieval with attentive deep local features[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 3476-3485.
|
73 |
LI K H, WANG L G, LIU L, et al. Decoupling makes weakly supervised local feature better[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 15817-15827.
|
74 |
XU R T, WANG C W, XU S B, et al. DomainFeat: learning local features with domain adaptation. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(1): 46- 59.
doi: 10.1109/TCSVT.2023.3282956
|
75 |
DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint: self-supervised interest point detection and description[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D.C., USA: IEEE Press, 2018: 33701-33712.
|
76 |
POTJE G, CADAR F, ARAUJO A, et al. Enhancing deformable local features by jointly learning to detect and describe keypoints[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 1306-1315.
|
77 |
|
78 |
TAIRA H, OKUTOMI M, SATTLER T, et al. InLoc: indoor visual localization with dense matching and view synthesis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7199-7209.
|
79 |
SCHÖNBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 4104-4113.
|
80 |
ARANDJELOVIĆ R, ZISSERMAN A. Three things everyone should know to improve object retrieval[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2012: 2911-2918.
|
81 |
DONG J M, SOATTO S. Domain-size pooling in local descriptors: DSP-SIFT[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2015: 5097-5106.
|
82 |
LIU C, YUEN J, TORRALBA A. SIFT flow: dense correspondence across scenes and its applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 978- 994.
doi: 10.1109/TPAMI.2010.147
|
83 |
|
84 |
|
85 |
|
86 |
SUN J M, SHEN Z H, WANG Y A, et al. LoFTR: detector-free local feature matching with Transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 8918-8927.
|
87 |
MAO R Y, BAI C, AN Y T, et al. 3DG-STFM: 3D geometric guided student-teacher feature matching[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 125-142.
|
88 |
CHEN H K, LUO Z X, ZHOU L, et al. ASpanFormer: detector-free image matching with adaptive span Transformer[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 20-36.
|
89 |
HUANG D H, CHEN Y, LIU Y, et al. Adaptive assignment for geometry aware local feature matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 5425-5434.
|
90 |
EDSTEDT J, ATHANASIADIS I, WADENBÄCK M, et al. DKM: dense kernelized feature matching for geometry estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 17765-17775.
|
91 |
TRUONG GIANG K, SONG S, JO S. TopicFM: robust and interpretable topic-assisted feature matching[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2023: 2447-2455.
|
92 |
YU J H, CHANG J H, HE J F, et al. Adaptive spot-guided Transformer for consistent local feature matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 21898-21908.
|
93 |
LI Z Q, SNAVELY N. MegaDepth: learning single-view depth prediction from Internet photos[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 2041-2050.
|
94 |
DAI A, CHANG A X, SAVVA M, et al. ScanNet: richly-annotated 3D reconstructions of indoor scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 2432-2443.
|
95 |
ENDRES F, HESS J, ENGELHARD N, et al. An evaluation of the RGB-D SLAM system[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Washington D.C., USA: IEEE Press, 2012: 1691-1696.
|
96 |
GIL A, MOZOS O M, BALLESTA M, et al. A comparative evaluation of interest point detectors and local descriptors for visual SLAM. Machine Vision and Applications, 2010, 21(6): 905- 920.
doi: 10.1007/s00138-009-0195-x
|
97 |
MUR-ARTAL R, MONTIEL J M M, TARDÓS J D. ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 2015, 31(5): 1147- 1163.
doi: 10.1109/TRO.2015.2463671
|
98 |
GU X F, WANG Y F, MA T Y. DBLD-SLAM: a deep-learning visual SLAM system based on deep binary local descriptor[C]//Proceedings of the International Conference on Control, Automation and Information Sciences (ICCAIS). Washington D.C., USA: IEEE Press, 2021: 325-330.
|
99 |
|
100 |
CAI C Y, JIAO J C, XU W, et al. Hard-lite SLAM: a hybrid detector based real-time SLAM system[C]//Proceedings of the 2022 the 6th International Conference on Innovation in Artificial Intelligence (ICIAI). New York, USA: ACM Press, 2022: 83-89.
|
101 |
LIU Y, ZHANG H. Indexing visual features: real-time loop closure detection using a tree structure[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Washington D.C., USA: IEEE Press, 2012: 3613-3618.
|
102 |
SHIN D W, HO Y S. Loop closure detection in simultaneous localization and mapping using learning based local patch descriptor. Electronic Imaging, 2018, 30(17): 284.
|
103 |
ZHANG X W, SU Y, ZHU X H. Loop closure detection for visual SLAM systems using convolutional neural network[C]//Proceedings of the 23rd International Conference on Automation and Computing (ICAC). Washington D.C., USA: IEEE Press, 2017: 1-6.
|
104 |
QIN H, HUANG M, CAO J, et al. Loop closure detection in SLAM by combining visual CNN features and submaps[C]//Proceedings of the 4th International Conference on Control, Automation and Robotics (ICCAR). Washington D.C., USA: IEEE Press, 2018: 426-430.
|
105 |
CHEN B F, YUAN D, LIU C F, et al. Loop closure detection based on multi-scale deep feature fusion. Applied Sciences, 2019, 9(6): 1120.
doi: 10.3390/app9061120
|
106 |
SWEENEY C, HOLLERER T, TURK M. Theia: a fast and scalable structure-from-motion library[C]//Proceedings of the 23rd ACM International Conference on Multimedia. Brisbane Australia. New York, USA: ACM Press, 2015: 693-696.
|
107 |
FAN B, KONG Q Q, WANG X C, et al. A performance evaluation of local features for image-based 3D reconstruction. IEEE Transactions on Image Processing, 2019, 28(10): 4774- 4789.
doi: 10.1109/TIP.2019.2909640
|
108 |
MA J Y, JIANG J J, ZHOU H B, et al. Guided locality preserving feature matching for remote sensing image registration. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4435- 4447.
doi: 10.1109/TGRS.2018.2820040
|
109 |
PAUL S, PATI U C. Remote sensing optical image registration using modified uniform robust SIFT. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9): 1300- 1304.
doi: 10.1109/LGRS.2016.2582528
|
110 |
QUAN D, WANG S, GU Y, et al. Deep feature correlation learning for multi-modal remote sensing image registration. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 4708216.
|
111 |
ZHU F, ZHU X X, HUANG Z W, et al. Deep learning based data-adaptive descriptor for non-rigid multi-modal medical image registration. Signal Processing, 2021, 183, 108023.
doi: 10.1016/j.sigpro.2021.108023
|