[1]DAMINELLI S,THOMAS J M,DURN C,et al.Common neighbours and the local-community-paradigm for link prediction in bipartite networks [EB/OL].[2018-04-18].http://de.arxiv.org/ftp/arxiv/papers/1504/1504.07011.pdf.
[2]胡文江,胡大伟.基于关联规则与标签的好友推荐算法[J].计算机工程与科学,2013,35(2):109-113.
[3]高永兵,杨红磊.基于内容与社会过滤的好友推荐算法研究[J].微型机与应用,2013,32(14):75-78,82.
[4]龙增艳,陈志刚,徐成林.基于用户交互的社交网络好友推荐算法KIFLink [J/OL] [2018-04-18].计算机工程:1-8[2019-01-04].https://doi.org/10.19678/j.issn.1000-3428.0049724.
[5]肖迎元,张红玉.基于用户潜在特征的社交网络好友推荐方法[J].计算机科学,2018,45(3):220-224.
[6]吕杰,关欣.一种融合用户上下文信息和动态预测的协同过滤推荐算法[J].小型微型计算机系统,2016(8):1680-1685.
[7]WANG P J,SHI L,BAI J N,et al.Mining association rules based on Apriori algorithm and application[C]//Proceedings of International Forum on Computer Science.Washington D.C.,USA:IEEE Computer Society,2010:141-143.
[8]李勇,王柳渝,魏珰.基于依存信息融合特征的汉语韵律预测[J].计算机工程,2018,44(1):306-310,316.
[9]宁可,孙同晶,徐洁洁.面向海量数据的改进最近邻优先吸收聚类算法[J].计算机工程,2018,44(4):35-40.
[10]杨新武,马壮,袁顺.基于弱分类调整的多分类Adaboost算法[J].电子与信息学报,2016,38(2):373-380.
[11]王杰,乐红兵.一种高效的改进频繁项集挖掘算法[J].微电子学与计算机,2018,35(2):49-51.
[12]AGRAWAL R,SRIKANT R.Fast algorithms for mining association rules [EB/OL].[2018-04-18].http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf.
[13]MUKHOPADHYAY D,AGRAWAL C,MARU D,et al.Addressing name node scalability issue in Hadoop distributed file system using cache approach[C]//Proceedings of International Conference on Information Technology.Washington D.C.,USA:IEEE Press,2014:321-326.
[14]AOUAD L M,LE-KHAC N A,KECHADI T M.Performance study of distributed Apriori-like frequent itemsets mining[J].Knowledge and Information Systems,2010,23(1):55-72.
[15]董洋溢,李伟华,于会.基于混合余弦相似度的中文文本层次关系挖掘[J].计算机应用研究,2017,34(5):1406-1409.
[16]FENG L I,FANG L I.An new approach measuring semantic similarity in hownet 2000[J].Journal of Chinese Information Processing,2007,21(3):99-105. |