[1] DANG Xiaochao,HUANG Yaning,HAO Zhanjun,et al.An indoor personnel behavior detection method based on channel state information[J].Computer Engineering,2018,44(8):79-85.(in Chinese)党小超,黄亚宁,郝占军,等.一种基于信道状态信息的室内人员行为检测方法[J].计算机工程,2018,44(8):79-85. [2] YANG Cheng.Human activity recognition based on RSSI[D].Nanjing:Nanjing University,2016.(in Chinese)杨成.基于RSSI的人体行为识别的研究[D].南京:南京大学,2016. [3] DANG Xiaochao,SI Xiong,HAO Zhanjun,et al.A passive indoor fingerprint localization algorithm based on channel state information[J].Computer Engineering,2018,44(7):114-120.(in Chinese)党小超,司雄,郝占军,等.一种基于信道状态信息的无源室内指纹定位算法[J].计算机工程,2018,44(7):114-120. [4] WANG Zhu,GUO Bin,YU Zhiwen,et al.Wi-Fi CSI based behavior recognition:from signals,actions to activities[J].IEEE Communications Magazine,2017,56(5):109-115. [5] DING Enjie,LI Xiansheng,ZHAO Tong,et al.A robust passive intrusion detection system with commodity WiFi devices[EB/OL].[2019-01-01].https://www.hindawi.com/journals/js/2018/8243905/abs/. [6] LU Yong,LÜ Shaohe,WANG Xiaodong,et al.A Survey on WiFi Based Human Behavior Analysis Technology[J].Chinese Journal of Computers,2019,42(2):3-23.(in Chinese)鲁勇,吕绍和,王晓东,等.基于WiFi信号的人体行为感知技术研究综述[J].计算机学报,2019,42(2):3-23. [7] LIU Jian,WANG Yan,CHEN Yingying,et al.Tracking vital signs during sleep leveraging off-the-shelf WiFi[C]//Proceedings of ACM International Symposium on Mobile Ad Hoc Networking & Computing.New York,USA:ACM Press,2015:267-276. [8] WANG Yan,LIU Jian,CHEN Yingying,et al.E-eyes:device-free location-oriented activity identification using fine-grained WiFi signatures[C]//Proceedings of the 20th Annual International Conference on Mobile Computing and Networking.New York,USA:ACM Press,2014:617-628. [9] ZHANG Jin,WEI Bo,HU Wen,et al.WiFi-ID:human identification using WiFi signal[C]//Proceedings of 2016 International Conference on Distributed Computing in Sensor Systems.Washington D.C.,USA:IEEE Press,2016:75-82. [10] CHEN Lili,CHEN Xiaojiang,NI Ligang,et al.Human behavior recognition using Wi-Fi CSI:challenges and opportunities[J].IEEE Communications Magazine,2017,55(10):112-117. [11] ZHANG Daqing,WANG Hao,WU Dan.Toward centimeter-scale human activity sensing with Wi-Fi signals[J].Computer,2017,50(1):48-57. [12] XIE Yaxiong,LI Zhenjiang,LI Mo.Precise power delay profiling with commodity Wi-Fi[J].IEEE Transactions on Mobile Computing,2018,18(6):1342-1355. [13] WAN Xiaochuan.Implementation of Butterworth band-stop IIR filtering algorithm based on STM32[J].Elec-tronic Technology and Software Engineering,2018(13):81-83.(in Chinese)万小川.一种基于STM32的巴特沃斯带阻IIR滤波算法的实现[J].电子技术与软件工程,2018(13):81-83. [14] SHAO Tingting,BAI Zongwen,ZHOU Meili.Decomposition and reconstruction of signal based on DWT[J].Computer Technology and Development,2014,24(11):159-161.(in Chinese)邵婷婷,白宗文,周美丽.基于离散小波变换的信号分解与重构[J].计算机技术与发展,2014,24(11):159-161. [15] LIU Wentao,CHEN Hong,CAI Xiaoxia,et al.Signal denoising algorithm based on dual-tree complex wavelet transform[J].Fire Control & Command Control,2014,39(12):88-91.(in Chinese)刘文涛,陈红,蔡晓霞,等.基于双树复小波变换的信号去噪算法[J].火力与指挥控制,2014,39(12):88-91. [16] SHAO Fengxian,LI Feng,ZHOU Shuren.Research on pedestrian detection of discrete wavelet transform Haar-LL[J].Computer Engineering,2014,40(9):204-209.(in Chinese)邵逢仙,李峰,周书仁.离散小波变换Haar-LL的行人检测研究[J].计算机工程,2014,40(9):204-209. [17] LI Beibei.Research and application on feature extraction algorithm based on deep neural network[D].Wuxi:Jiangnan University,2018.(in Chinese)李蓓蓓.基于深度神经网络的特征提取算法及其应用研究[D].无锡:江南大学,2018. [18] LUO Xiaoxia,WANG Liqing,XUE Hongye.A novel algorithm of image edge detection based on wavelet transform and curvelet transform[J].Computer Engineering and Science,2015,37(1):157-161.(in Chinese)罗晓霞,王莉青,薛弘晔.基于小波变换和曲波变换的图像边缘检测新算法[J].计算机工程与科学,2015,37(1):157-161. [19] LI Fei,GAO Xiaoguang,WAN Kaifang.Research on RBM training algorithm with dynamic Gibbs sampling[J].Acta Automatica Sinica,2016,42(6):931-942.(in Chinese)李飞,高晓光,万开方.基于动态Gibbs采样的RBM训练算法研究[J].自动化学报,2016,42(6):931-942. [20] LIU Wenyuan,WANG Siyang,WANG Lin,et al.From lens to prism:device-free modeling and recognition of multi-part activities[J].IEEE Access,2018,6:36271-36282. |