[1] 项亮.推荐系统实战[M].北京:人民邮电出版社, 2012. XIANG L.Recommended system practice[M].Beijing:People's Posts and Telecommunications Press, 2012.(in Chinese) [2] RESNICK P, VARIAN H R.Recommender systems[J].Communications of the ACM, 1997, 40(3):56-58. [3] 林霜梅, 汪更生, 陈弈秋.个性化推荐系统中的用户建模及特征选择[J].计算机工程, 2007, 33(17):196-198, 230. LIN S M, WANG G S, CHEN Y Q.User modeling and feature selection in personalized recommending system[J].Computer Engineering, 2007, 33(17):196-198, 230.(in Chinese) [4] 毛德磊, 唐雁.基于归因理论用户偏好提取的协同过滤算法[J].计算机工程, 2019, 45(6):225-229, 236. MAO D L, TANG Y.Collaborative filtering algorithm based on attribution theory for user preference extraction[J].Computer Engineering, 2019, 45(6):225-229, 236.(in Chinese) [5] ZHANG F Z, YUAN N J, LIAN D F, et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2016:353-362. [6] BARKAN O, KOENIGSTEIN N.Item2vec:neural item embedding for collaborative filtering[C]//Proceedings of the 26th International Workshop on Machine Learning for Signal Processing.Washington D.C., USA:IEEE Press, 2016:1-6. [7] ZHOU C, LIU Y, LIU X, et al.Scalable graph embedding for asymmetric proximity[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2017:2942-2948. [8] PEROZZI B, AL-RFOU R, SKIENA S.DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2014:701-710. [9] ROWEIS S T.Nonlinear dimensionality reduction by locally linear embedding[J].Science, 2000, 290(5500):2323-2326. [10] BELKIN M, NIYOGI P.Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic.New York, USA:ACM Press, 2002:585-591. [11] MIKOLOV T, CHEN K, CORRADO G, et al.Efficient estimation of word representations in vector space[EB/OL].[2020-05-11].http://arxiv.org/pdf/1301.3781. [12] SHAN Y, HOENS T R, JIAO J, et al.Deep crossing:Web-scale modeling without manually crafted combinatorial features[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2016:255-262. [13] GROVER A, LESKOVEC J.Node2vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2016:855-864. [14] TANG J, QU M, WANG M Z, et al.LINE:large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web.Geneva, Switzerland:International World Wide Web Conferences Steering Committee, 2015:1067-1077. [15] CAO S S, LU W, XU Q K.GraRep:learning graph representations with global structural information[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management.New York, USA:ACM Press, 2015:891-900. [16] YANG C, LIU Z, ZHAO D, et al.Network representation learning with rich text information[C]//Proceedings of International Joint Conference on Artificial Intelligence.New York, USA:ACM Press, 2015:2111-2117. [17] PAGE L, BRIN S, MOTWANI R, et al.The PageRank citation ranking:bringing order to the Web[EB/OL].[2020-05-11].https://blog.csdn.net/iicy266/article/details/12283937. [18] VINCENT P, LAROCHELLE H, BENGIO Y, et al.Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning.New York, USA:ACM Press, 2008:1096-1103. [19] NG A.Sparse autoencoder[EB/OL].[2020-05-11].https://www.mendeley.com/catalogue/a06882b2-8546-33a0-9803-53cf01f649cc/. [20] MASON S J, GRAHAM N E.Areas beneath the Relative Operating Characteristics(ROC) and Relative Operating Levels(ROL) curves:statistical significance and interpretation[J].Quarterly Journal of the Royal Meteorological Society, 2002, 128(584):2145-2166. |