1 |
谢娟英, 王艳娥. 最小方差优化初始聚类中心的K-means算法. 计算机工程, 2014, 40 (8): 205-211, 223
doi: 10.3969/j.issn.1000-3428.2014.08.039
|
|
XIE J Y, WANG Y E. K-means algorithm based on minimum deviation initialized clustering centers. Computer Engineering, 2014, 40 (8): 205-211, 223
doi: 10.3969/j.issn.1000-3428.2014.08.039
|
2 |
刘攀登, 刘清明. 稀疏数据中基于高斯混合模型的位置推荐框架. 计算机工程, 2018, 44 (1): 62- 68.
URL
|
|
LIU P D, LIU Q M. Location recommendation framework based on Gaussian mixture model in sparse data. Computer Engineering, 2018, 44 (1): 62- 68.
URL
|
3 |
D'ANDRADE R G. U-statistic hierarchical clustering. Psychometrika, 1978, 43 (1): 59- 67.
doi: 10.1007/BF02294089
|
4 |
葛君伟, 杨广欣. 基于共享最近邻的密度自适应邻域谱聚类算法. 计算机工程, 2021, 47 (8): 116- 123.
URL
|
|
GE J W, YANG G X. Spectral clustering algorithm for density adaptive neighborhood based on shared nearest neighbors. Computer Engineering, 2021, 47 (8): 116- 123.
URL
|
5 |
VIDAL R. Subspace clustering. IEEE Signal Processing Magazine, 2011, 28 (2): 52- 68.
doi: 10.1109/MSP.2010.939739
|
6 |
ELHAMIFAR E, VIDAL R. Sparse subspace clustering[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 2790-2797.
|
7 |
孙登第, 凌媛, 丁转莲, 等. 基于稀疏子空间聚类的多层网络社团检测. 计算机工程, 2021, 47 (10): 52- 60.
URL
|
|
SUN D D, LING Y, DING Z L, et al. Multi-layer network community detection based on sparse subspace clustering. Computer Engineering, 2021, 47 (10): 52- 60.
URL
|
8 |
VIDAL R, FAVARO P. Low Rank Subspace Clustering (LRSC). Pattern Recognition Letters, 2014, 43, 47- 61.
doi: 10.1016/j.patrec.2013.08.006
|
9 |
REN Y, WANG N, LI M, et al. Deep density-based image clustering. Knowledge-Based Systems, 2020, 197, 105841.
doi: 10.1016/j.knosys.2020.105841
|
10 |
|
11 |
何锦蓉. 深度子空间聚类算法研究[D]. 徐州: 中国矿业大学, 2020.
|
|
HE J R. Research on depth subspace clustering algorithm[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese)
|
12 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
13 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
14 |
|
15 |
|
16 |
GUO X F, LIU X W, ZHU E, et al. Adaptive self-paced deep clustering with data augmentation. IEEE Transactions on Knowledge and Data Engineering, 2020, 32 (9): 1680- 1693.
|
17 |
DENG L. The MNIST database of handwritten digit images for machine learning research[best of the Web]. IEEE Signal Processing Magazine, 2012, 29 (6): 141- 142.
doi: 10.1109/MSP.2012.2211477
|
18 |
XIAO H, RASUL K, VOLLGRAF R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms[EB/OL]. [2022-07-05]. https://arxiv.org/abs/1708.07747.
|
19 |
|
20 |
GLOROT X, BOR DE S A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. New York, USA: ACM Press, 2011: 315-323.
|
21 |
张有健, 陈晨, 王再见. 深度学习算法的激活函数研究. 无线电通信技术, 2021, 47 (1): 115- 120.
URL
|
|
ZHANG Y J, CHEN C, WANG Z J. Research on activation function of deep learnimg algorithm. Radio Communi-cations Technology, 2021, 47 (1): 115- 120.
URL
|
22 |
|
23 |
ELHAMIFAR E, VIDAL R. Sparse subspace clustering: algorithm, theory, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (11): 2765- 2781.
|
24 |
LU Y Z, LIN J Q, CHEN S, et al. Automatic tumor segmentation by means of deep convolutional U-net with pre-trained encoder in PET images. IEEE Access, 2020, 8, 113636- 113648.
|
25 |
|
26 |
JOSE VALANARASU J M, PATEL V M. Overcomplete deep subspace clustering networks[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2021: 746-755.
|