[1] SUNG H, FERLAY J, SIEGEL R L, et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA:a Cancer Journal for Clinicians, 2021, 71(3):209-249. [2] MAES F, COLLIGNON A, VANDERMEULEN D, et al.Multimodality image registration by maximization of mutual information[J].IEEE Transactions on Medical Imaging, 1997, 16(2):187-198. [3] WACHINGER C, NAVAB N.Entropy and Laplacian images:structural representations for multi-modal registration[J].Medical Image Analysis, 2012, 16(1):1-17. [4] HEINRICH M P, JENKINSON M, BHUSHAN M, et al.MIND:modality independent neighbourhood descriptor for multi-modal deformable registration[J].Medical Image Analysis, 2012, 16(7):1423-1435. [5] ZHOU S K, GREENSPAN H, DAVATZIKOS C, et al.A review of deep learning in medical imaging:imaging traits, technology trends, case studies with progress highlights, and future promises[J].Proceedings of the IEEE, 2021, 109(5):820-838. [6] SIMONOVSKY M, GUTIÉRREZ-BECKER B, MATEUS D, et al.A deep metric for multimodal registration[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2016:10-18. [7] HASKINS G, KRUECKER J, KRUGER U, et al.Learning deep similarity metric for 3D MR-TRUS image registration[J].International Journal of Computer Assisted Radiology and Surgery, 2019, 14(3):417-425. [8] GOODFELLOW I, POUGET ABADIE J, MIRZA M, et al.Generative adversarial networks[EB/OL].[2022-01-10].https://arxiv.org/abs/1406.2661?context=cs.LG. [9] YAN P K, XU S, RASTINEHAD A R, et al.Adversarial image registration with application for MR and TRUS image fusion[C]//Proceedings of International Conference on Machine Learning in Medical Imaging.Berlin, Germany:Springer, 2018:197-204. [10] MAHAPATRA D, ANTONY B, SEDAI S M, et al.Deformable medical image registration using generative adversarial networks[C]//Proceedings of the 15th International Symposium on Biomedical Imaging.Washington, USA:IEEE Press, 2018:1449-1453. [11] FAN J F, CAO X H, WANG Q, et al.Adversarial learning for mono- or multi-modal registration[J].Medical Image Analysis, 2019, 58:101545-101556. [12] DE VOS B D, BERENDSEN F F, VIERGEVER M A, et al.End-to-end unsupervised deformable image registration with a convolutional neural network[C]//Proceedings of Conference on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Berlin, Germany:Springer, 2017:204-212. [13] ROHÉ M M, DATAR M, HEIMANN T, et al.SVF-Net:learning deformable image registration using shape matching[C]//Proceedings of Conference on Medical Image Computing and Computer Assisted Intervention.Berlin, Germany:Springer, 2017:266-274. [14] BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al.VoxelMorph:a learning framework for deformable medical image registration[J].IEEE Transactions on Medical Imaging, 2019, 38(8):1788-1800. [15] HU Y P, MODAT M, GIBSON E, et al.Weakly-supervised convolutional neural networks for multimodal image registration[J].Medical Image Analysis, 2018, 49:1-13. [16] ZHOU B, AUGENFELD Z, CHAPIRO J, et al.Anatomy-guided multimodal registration by learning segmentation without ground truth:application to intraprocedural CBCT/MR liver segmentation and registration[J].Medical Image Analysis, 2021, 71:102041-102049. [17] MOK T C W, CHUNG A C S.Large deformation diffeomorphic image registration with laplacian pyramid networks[C]//Proceedings of Conference on Medical Image Computing and Computer Assisted Intervention.Berlin, Germany:Springer, 2020:211-221. [18] ZHOU Y, PANG S, CHENG J, et al.Unsupervised deformable medical image registration via pyramidal residual deformation fields estimation[EB/OL].[2022-01-08].https://doi.org/10.48550/arXiv.2004.07624. [19] RONNEBERGER O, FISCHER P, BROX T.U-Net:Convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-assisted Intervention.Berlin, Germany:Springer, 2015:234-241. [20] ROMERA-PAREDES B, TORR P H S.Recurrent instance segmentation[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:312-329. [21] JETLEY S, LORD N A, LEE N, et al.Learn to pay attention[EB/OL].[2022-01-08].https://doi.org/10.48550/arXiv.1804.02391. [22] WANG X L, GIRSHICK R, GUPTA A, et al.Non-local neural networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7794-7803. [23] OKTAY O, SCHLEMPER J, FOLGOC L L, et al.Attention U-net:learning where to look for the pancreas[EB/OL].[2022-01-08].https://doi.org/10.48550/arXiv.1804.03999. [24] ZAGORUYKO S, KOMODAKIS N.Paying more attention to attention:improving the performance of convolutional neural networks via attention transfer[EB/OL].[2022-01-08].https://www.semanticscholar.org/paper/Paying-More-Attention-to-Attention%3A-Improving-the-Zagoruyko-Komodakis/f7b032a4df721d4ed2bab97f6acd33d62477b7a5. [25] YANG H R, SUN J, CARASS A, et al.Unsupervised MR-to-CT synthesis using structure-constrained CycleGAN[J].IEEE Transactions on Medical Imaging, 2020, 39(12):4249-4261. [26] WEI D M, AHMAD S, HUO J Y, et al.SLIR:Synthesis, localization, inpainting, and registration for image-guided thermal ablation of liver tumors[J].Medical Image Analysis, 2020, 65:101763-101771. [27] KLEIN S, STARING M, MURPHY K, et al.Elastix:a toolbox for intensity-based medical image registration[J].IEEE Transactions on Medical Imaging, 2009, 29(1):196-205. [28] PLUIM J P W, MAINTZ J B A, VIERGEVER M A.Mutual-information-based registration of medical images:a survey.[J].IEEE Transactions on Medical Imaging, 2003, 22(8):986-1004. [29] WANG Z, BOVIK A C, SHEIKH H R, et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004, 13(4):600-612. |