[1] XI Xuefeng,ZHOU Guodong.A survey on deep learning for natural language processing[J].Acta Automatica Sinica,2016,42(10):1445-1465.(in Chinese) 奚雪峰,周国栋.面向自然语言处理的深度学习研究[J].自动化学报,2016,42(10):1445-1465. [2] LI Liuyu,DU Qiu.The ability and inability of deep learning[J].Internation Financing,2018(8):25-27.(in Chinese) 李留宇,杜秋.深度学习的能与不能[J].国际融资,2018(8):25-27. [3] DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2019-06-01]. https://arxiv.org/pdf/1810.04805.pdf. [4] PETERS M E,NEUMANN M,IYYER M,et al.Deep contextualized word representations[EB/OL].[2019-06-01]. https://arxiv.org/pdf/1802.05365.pdf. [5] RADFORD A,NARASIMHAN K,SALIMANS T,et al.Improving language understanding by generative pre-training[EB/OL].[2019-06-01]. https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf. [6] ZHANG Yukun,LIU Maofu,HU Huijun.Chinese medical entity classification and relationship extraction based on joint neural network model[J].Computer Engineering and Science,2019,41(6):1110-1118.(in Chinese) 张玉坤,刘茂福,胡慧君.基于联合神经网络模型的中文医疗实体分类与关系抽取[J].计算机工程与科学,2019,41(6):1110-1118. [7] LI Jianlong,WANG Panqing,HAN Qiyu.Military named entity recognition based on bidirectional LSTM[J].Computer Engineering and Science,2019,41(4):713-718.(in Chinese) 李健龙,王盼卿,韩琪羽.基于双向LSTM的军事命名实体识别[J].计算机工程与科学,2019,41(4):713-718. [8] BROWN P F.Class-based n-gram models of natural language[J].Computational Linguistics,1992,18(4):467-479. [9] MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2013:3111-3119. [10] PENNINGTON J,SOCHER R,MANNING C.GloVe:global vectors for wordrepresentation[EB/OL].[2019-06-01]. https://nlp.stanford.edu/pubs/glove.pdf. [11] TURIAN J P,RATINOV L A,BENGIO Y.Word representations:a simple and general method for semi-supervised learning[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics.New York,USA:ACM Press,2010:384-394. [12] MCCANN B,BRADBURY J,XIONG C,et al.Learned in translation:contextualized word vectors[C]//Proceedings of Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2017:6294-6305. [13] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2017:5998-6008. [14] SUN Yu,WANG Shuohuan,LI Yukun,et al.ERNIE:enhanced representation through knowledge integration[EB/OL].[2019-06-01]. https://arxiv.org/pdf/1904.09223v1.pdf. [15] COLLOBERT R,WESTON J,BOTTOU L,et al.Natural language processing (almost) from scratch[J].Journal of Machine Learning Research,2011,12(8):2493-2537. [16] KIROS R,ZHU Y,SALAKHUTDINOV R R,et al.Skip-thought vectors[C]//Proceedings of Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2015:3294-3302. [17] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444. [18] HOWARD J,RUDER S.Universal language model fine-tuning for text classification[EB/OL].[2019-06-01]. https://arxiv.org/pdf/1801.06146.pdf. [19] ZHU H,PASCHALIDIS I C,TAHMASEBI A.Clinical concept extraction with contextual word embedding[EB/OL].[2019-06-01]. https://arxiv.org/pdf/1810.10 566.pdf. [20] LEE J,YOON W,KIM S,et al.Biobert:pre-trained biomedical language representation model for biomedical text mining[EB/OL].[2019-06-01].https://arxiv.org/ftp/arxiv/papers/1901/1901.08746.pdf. [21] SUN Xu,WANG Houfeng,LI Wenjie.Fast online training with frequency-adaptive learning rates for Chinese word segmentation and new word detection[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics.Stroudsburg,USA:Association for Computational Linguistics,2012:253-262. [22] ADHIKARI A,RAM A,TANG R,et al.DocBERT:BERT for document classification[EB/OL].[2019-06-01].https://arxiv.org/pdf/1904.08398v1.pdf. [23] CONNEAU A,LAMPLE G,RINOTT R,et al.XNLI:evaluating cross-lingual sentence representations[EB/OL].[2019-06-01].https://arxiv.org/pdf/1809.05053.pdf. [24] KOWSARI K,HEIDARYSAFA M,BROWN D E,et al.RMDL:random multimodel deep learning for classification[C]//Proceedings of the 2nd International Conference on Information System and Data Mining.New York,USA:ACM Press,2018:19-28. [25] ZHANG Yue,YANG Jie.Chinese NER using lattice LSTM[EB/OL].[2019-06-01].https://arxiv.org/pdf/1805.02023.pdf. [26] ARTETXE M,SCHWENK H.Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond[EB/OL].[2019-06-01].https://arxiv.org/pdf/1812.10464.pdf. |