1 |
庄芮, 蔡彤娟. 人类命运共同体视域下的东北亚经济共同体构建. 人民论坛·学术前沿, 2023,(15): 55- 64.
URL
|
|
ZHUANG R, CAI T J. Building a Northeast Asian economic community: a perspective of community with a shared future for mankind. Frontiers, 2023,(15): 55- 64.
URL
|
2 |
高翔, 王石, 朱俊武, 等. 命名实体识别任务综述. 计算机科学, 2023, 50(S1): 26- 33.
URL
|
|
GAO X, WANG S, ZHU J W, et al. Summary of named entity recognition tasks. Computer Science, 2023, 50(S1): 26- 33.
URL
|
3 |
王昊, 苏新宁. 基于模式匹配的中文通用本体概念抽取模型. 情报理论与实践, 2008, 31(2): -297, 291.
URL
|
|
WANG H, SU X N. A model for extraction of the concept of Chinese general ontology based on pattern matching. Information Studies (Theory & Application), 2008, 31(2): -297, 291.
URL
|
4 |
ETZIONI O, CAFARELLA M, DOWNEY D, et al. Unsupervised named-entity extraction from the Web: an experimental study. Artificial Intelligence, 2005, 165(1): 91- 134.
doi: 10.1016/j.artint.2005.03.001
|
5 |
周俊生, 戴新宇, 尹存燕, 等. 基于层叠条件随机场模型的中文机构名自动识别. 电子学报, 2006, 34(5): 804- 809.
doi: 10.3321/j.issn:0372-2112.2006.05.008
|
|
ZHOU J S, DAI X Y, YIN C Y, et al. Automatic recognition of Chinese organization Name based on cascaded conditional random fields. Acta Electronica Sinica, 2006, 34(5): 804- 809.
doi: 10.3321/j.issn:0372-2112.2006.05.008
|
6 |
陈德鑫, 占袁圆, 杨兵, 等. 基于CNN-BiLSTM模型的在线医疗实体抽取研究. 图书情报工作, 2019, 63(12): 105- 113.
URL
|
|
CHEN D X, ZHAN Y Y, YANG B, et al. Research on extraction of online medical entities based on mixed deep learning model. Library and Information Service, 2019, 63(12): 105- 113.
URL
|
7 |
|
8 |
MA X Z, HOVY E. End-to-end sequence labeling via Bi-directional LSTM-CNNs-CRF[C]∥Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2016: 1064-1074.
|
9 |
任妮, 鲍彤, 沈耕宇, 等. 基于深度学习的细粒度命名实体识别研究——以番茄病虫害为例. 情报科学, 2021, 39(11): 96- 102.
URL
|
|
REN N, BAO T, SHEN G Y, et al. Fine-grained named entity recognition based on deep learning: a case study of tomato diseases and pests. Information Science, 2021, 39(11): 96- 102.
URL
|
10 |
WEI H, GAO M Y, ZHOU A, et al. A multichannel biomedical named entity recognition model based on multitask learning and contextualized word representations. Wireless Communications and Mobile Computing, 2020, 2020, 8894760.
|
11 |
琚生根, 李天宁, 孙界平. 基于关联记忆网络的中文细粒度命名实体识别. 软件学报, 2021, 32(8): 2545- 2556.
URL
|
|
JU S G, LI T N, SUN J P. Chinese fine-grained name entity recognition based on associated memory networks. Journal of Software, 2021, 32(8): 2545- 2556.
URL
|
12 |
陈剑, 何涛, 闻英友, 等. 基于BERT模型的司法文书实体识别方法. 东北大学学报(自然科学版), 2020, 41(10): 1382- 1387.
doi: 10.12068/j.issn.1005-3026.2020.10.003
|
|
CHEN J, HE T, WEN Y Y, et al. Entity recognition method for judicial documents based on BERT model. Journal of Northeastern University (Natural Science), 2020, 41(10): 1382- 1387.
doi: 10.12068/j.issn.1005-3026.2020.10.003
|
13 |
王月, 王孟轩, 张胜, 等. 基于BERT的警情文本命名实体识别. 计算机应用, 2020, 40(2): 535- 540.
URL
|
|
WANG Y, WANG M X, ZHANG S, et al. Alarm text named entity recognition based on BERT. Journal of Computer Applications, 2020, 40(2): 535- 540.
URL
|
14 |
顾亦然, 霍建霖, 杨海根, 等. 基于BERT的电机领域中文命名实体识别方法. 计算机工程, 2021, 47(8): 78-83, 92.
URL
|
|
GU Y R, HUO J L, YANG H G, et al. BERT-based Chinese named entity recognition method in motor field. Computer Engineering, 2021, 47(8): 78-83, 92.
URL
|
15 |
CUI Y M, CHE W X, LIU T, et al. Pre-training with whole word masking for Chinese BERT. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2021, 29, 3504- 3514.
doi: 10.1109/TASLP.2021.3124365
|
16 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-11-01]. http://arxiv.org/abs/1810.04805.
|
17 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9(8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
18 |
LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]∥Proceedings of the 18th International Conference on Machine Learning. New York. USA: ACM Press, 2001: 282-289.
|
19 |
STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[C]∥Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2017: 2670-2680.
|
20 |
朱西平, 卢星宇, 苏作新, 等. 基于多神经网络与注意力的页岩气实体识别. 中国科技论文, 2022, 17(11): 1201- 1206.
doi: 10.3969/j.issn.2095-2783.2022.11.005
|
|
ZHU X P, LU X Y, SU Z X, et al. Shale gas entity recognition based on multi-neural network and attention. China Sciencepaper, 2022, 17(11): 1201- 1206.
doi: 10.3969/j.issn.2095-2783.2022.11.005
|
21 |
PETERS M, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]∥Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2018: 2227-2237.
|
22 |
LAN Z Z, CHEN M D, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language representations[EB/OL]. [2023-11-01]. http://arxiv.org/abs/1909.11942v6.
|