[1] WU Shaohong,PENG Dunlu,YUAN Weiwei,et al.MGSC:a multi-granularity semantic cross model for matching short texts[J].Journal of Chinese Computer Systems,2019,40(6):1148-1152.(in Chinese)吴少洪,彭敦陆,苑威威,等.MGSC:一种多粒度语义交叉的短文本语义匹配模型[J].小型微型计算机系统,2019,40(6):1148-1152. [2] JIN Bo,SHI Yanjun,TENG Hongfei.Similarity algorithm of text based on semantic understanding[J].Journal of Dalian University of Technology,2005,45(2):291-297.(in Chinese)金博,史彦军,滕弘飞.基于语义理解的文本相似度算法[J].大连理工大学学报,2005,45(2):291-297. [3] ZHAO Zhen,WU Ning,SONG Panpan.Sentence semantic similarity calculation based on multi-feature fusion[J].Computer Engineering,2012,38(1):171-173.(in Chinese)赵臻,吴宁,宋盼盼.基于多特征融合的句子语义相似度计算[J].计算机工程,2012,38(1):171-173. [4] LIU Hongzhe.Research on text semantic similarity calculation method[D].Beijing:Beijing Jiaotong University,2012.(in Chinese)刘宏哲.文本语义相似度计算方法研究[D].北京:北京交通大学,2012. [5] HUANG Jiangping,JI Donghong.Paraphrase identification based on sentence semantic distances[J].Journal of Sichuan University(Engineering Science Edition),2016,48(6):202-207.(in Chinese)黄江平,姬东鸿.基于句子语义距离的释义识别研究[J].四川大学学报(工程科学版),2016,48(6):202-207. [6] KOZAREVA Z,MONTOYO A.Paraphrase identification on the basis of supervised machine learning techniques[C]//Proceedings of International Conference on Natural Language Processing(in Finland).Berlin,Germany:Springer,2006:524-533. [7] LI Yujian,LIU BO.A normalized Levenshtein distance metric[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(6):1091-1095. [8] REAL R,VARGAS J M.The probabilistic basis of Jaccard's index of similarity[J].Systematic Biology,1996,45(3):380-385. [9] CHEN Zhenrui,DING Zhiming.Improved word repre-sentation based on GloVe model[J].Computer Systems & Applications,2019,28(1):194-199.(in Chinese)陈珍锐,丁治明.基于GloVe模型的词向量改进方法[J].计算机系统应用,2019,28(1):194-199. [10] DOLAN B.Unsupervised construction of large paraphrase corpora:exploiting massively parallel news sources[C]//Proceedings of the 20th International Conference on Computational Linguistics.San Diego,USA:Association for Computational Linguistics,2004:350-357. [11] WU H C,LUK R W P,WONG K F,et al.Interpreting TF-IDF term weights as making relevance decisions[J].ACM Transactions on Information Systems,2008,26(3):1-27. [12] ARORA S,LIANG Y,MA T.A simple but tough-to-beat baseline for sentence embeddings[C]//Proceedings of International Conference on Learning Representations.Toulon,France:[s.n.],2017:1-16. [13] HILL F,CHO K,KORHONEN A.Learning distributed representations of sentences from unlabeled data[C]//Proceedings of NAACL-HLT 2016.San Diego,USA:Association for Computational Linguistics,2016:1367-1377. [14] LOGESWARAN L,LEE H.An efficient framework for learning sentence representations[EB/OL].[2019-05-10].https://arxiv.org/pdf/1803.02893.pdf. [15] KIROS R,ZHU Y,SALAKHUTDINOV R,et al.Skip-thought vectors[C]//Proceedings of International Conference on Neural Information Processing Systems.Montreal,Canada:[s.n.],2015:1-11. [16] JIANG Hua,HAN Anqi,WANG Meijia,et al.Solution algorithm of string similarity based on improved Levenshtein distance[J].Computer Engineering,2014,40(1):222-227.(in Chinese)姜华,韩安琪,王美佳,等.基于改进编辑距离的字符串相似度求解算法[J].计算机工程,2014,40(1):222-227. [17] CONNEAU A,KIELA D,SCHWENK H,et al.Supervised learning of universal sentence representations from natural language inference data[EB/OL].[2019-05-10].https://arxiv.org/pdf/1705.02364.pdf. [18] SUBRAMANIAN S,TRISCHLER A,BENGIO Y,et al.Learning general purpose distributed sentence representations via large scale multi-task learning[C]//Proceedings of International Conference on Learning Representations.Vancouver,Canada:[s.n.]:2018:1-16. [19] GONG Yichen,LUO Heng,ZHANG Jian.Natural language inference over interaction space[EB/OL].[2019-05-10].https://arxiv.org/pdf/1709.04348.pdf. [20] SU Jianlin.Q&A model based on CNN:DGCNN[EB/OL].[2019-05-10].https://spaces.ac.cn/archives/5409.(in Chinese)苏剑林.基于CNN的阅读理解式问答模型:DGCNN[EB/OL].[2019-05-10].https://spaces.ac.cn/archives/5409. [21] ZANG Runqiang,SUN Hongguang,YANG Fengqin,et al.Text similarity calculation method based on Levenshtein and TFRSF[J].Computer and Modernization,2018(4):84-89.(in Chinese)藏润强,孙红光,杨凤芹,等.基于Levenshtein和TFRSF的文本相似度计算方法[J].计算机与现代化,2018(4):84-89. [22] PENNINGTON J,SOCHER R,MANNING C.GloVe:global vectors for word representation[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.San Diego,USA:Association for Computational Linguistics,2014:1532-1543. [23] WILLIAMS A,NANGIA N,BOWMAN S R.A broad-coverage challenge corpus for sentence understanding through inference[EB/OL].[2019-05-10].https://arxiv.org/pdf/1704.05426v4.pdf. [24] SOCHER R,PERELYGIN A,WU J Y,et al.Recursive deep models for semantic compositionality over a sentiment treebank[EB/OL].[2019-05-10].https://nlp.stanford.edu/sentiment/index.html. |