[1] BAEZA-YATES R,RIBEIRO-NETO B.Modern infor-mation retrieval[M].New York,USA:ACM Press,1999. [2] MANNING C D,SCHUTZE H.Foundations of statistical natural language processing[M].Cambridge,USA:MIT Press,1999. [3] MA Linjin,WAN Liang,MA Shaoju,YANG Ting.Abnormal traffic identification method based on bag of words model clustering[J].Computer Engineering,2017,43(5):204-209.(in Chinese)马林进,万良,马绍菊,等.基于词袋模型聚类的异常流量识别方法[J].计算机工程,2017,43(5):204-209. [4] LEI Shuo,LIU Xumin,XU Weixiang.Chinese short text classification based on word vector extension[J].Computer Applications and Software,2018,35(8):269-274.(in Chinese)雷朔,刘旭敏,徐维祥.基于词向量特征扩展的中文短文本分类研究[J].计算机应用与软件,2018,35(8):269-274. [5] HWANG M,CHOI C,YOUN B,et al.Word sense dis-ambiguation based on relation structure[C]//Proceedings of 2008 International Conference on Advanced Language Processing and Web Information Technology.New York,USA:ACM Press,2008:15-20. [6] WANG X,McCALLUM A,WEI X.Topical N-grams:phrase and topic discovery,with an application to information retrieval[C]//Proceedings of IEEE International Conference on Data Mining.Washington D.C.,USA:IEEE Press,2007:697-702. [7] CHEN Xingjian,HU Xuejiao,XUE Wei.Improved bag of words model based on relational expansion[J].Journal of Chinese Computer Systems,2019,40(5):1040-1044.(in Chinese)陈行健,胡雪娇,薛卫.基于关系拓展的改进词袋模型研究[J].小型微型计算机系统,2019,40(5):1040-1044. [8] CHEN Wenshi,LIU Xinhui,LU Mingyu.Feature extraction of deep topic model for multi-label text classification[J].Pattern Recognition and Artificial Intelligence,2019,32(9):785-792.(in Chinese)陈文实,刘心惠,鲁明羽.面向多标签文本分类的深度主题特征提取[J].模式识别与人工智能,2019,32(9):785-792. [9] HAN Xuli,ZENG Biqin,ZENG Feng,et al.Sentiment analysis based on word embedding auxiliary mechanism[J].Computer Science,2019,46(10):258-264.(in Chinese)韩旭丽,曾碧卿,曾锋,等.基于词嵌入辅助机制的情感分析[J].计算机科学,2019,46(10):258-264. [10] ZHENG Cheng,HONG Tongtong,XUE Manyi.BLSTM_MLPCNN model for short text classification[J].Computer Science,2019,46(6):206-211.(in Chinese)郑诚,洪彤彤,薛满意.用于短文本分类的BLSTM_MLPCNN模型[J].计算机科学,2019,46(6):206-211. [11] MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[C]//Proceedings of International Conference on Learning Representations.Scottsdale,USA:[s.n.],2013:1-12. [12] TU Shouzhong,HUANG Minlie.Mining microblog user interests based on TextRank with TF-IDF factor[J].The Journal of China Universities of Posts and Telecommunica-tions,2016,23(5):40-46. [13] DUAN Xulei,ZHANG Yangsen,SUN Yizhuo.Research on sentence vector representation and similarity calculation method about Microblog texts[J].Computer Engineering,2017,43(5):143-148.(in Chinese)段旭磊,张仰森,孙卓.微博文本的句向量表示及相似度计算方法研究[J].计算机工程,2017,43(5):143-148. [14] WANG Jing,LUO Lang,WANG Deqiang.Research on Chinese short text classification based on Word2Vec[J].Computer Systems and Applications,2018,27(5):209-215.(in Chinese)汪静,罗浪,王德强.基于Word2Vec的中文短文本分类问题研究[J].计算机系统应用,2018,27(5):209-215. [15] WANG Gensheng,HUANG Xuejian.Convolution neural network text classification model based on Word2vec and improved TF-IDF[J].Journal of Chinese Computer Systems,2019,40(5):1120-1126.(in Chinese)王根生,黄学坚.基于Word2vec和改进型TF-IDF的卷积神经网络文本分类模型[J].小型微型计算机系统,2019,40(5):1120-1126. [16] BENGIO Y,SCHWENK H,SENECAL J S,et al.Neural probabilistic language models[M].Berlin,Germany:Springer,2006. [17] GAO Mingxia,LI Jingwei.Chinese short text classification method based on word2vec embedding[J].Journal of Shandong University(Engineering Science),2019,49(2):34-41.(in Chinese)高明霞,李经纬.基于word2vec词模型的中文短文本分类方法[J].山东大学学报(工学版),2019,49(2):34-41. [18] MIKOLOV T,YIH W,ZWEIG G.Linguistic regularities in continuous space word representations[C]//Proceedings of 2013 Conference of the North American Chapter of the Association for Computational Linguistics.Atlsnta,USA:NAACL Press,2013:746-751. [19] LIU Tao,LIU Shengping,CHEN Zheng,et al.An evalua-tion on feature selection for text clustering[C]//Proceedings of the 20th International Conference on International Con-ference on Machine Learning.Washington D.C.,USA:AAAI Press,2003:488-495. [20] NIE Weimin,CHEN Yongzhou,MA Jing.A text vector representation model merging multi-granularity informa-tion[J].Data Analysis and Knowledge Discovery,2019,3(9):45-52.(in Chinese)聂维民,陈永洲,马静.融合多粒度信息的文本向量表示模型[J].数据分析与知识发现,2019,3(9):45-52. |