[1]LIU Bing.Sentiment analysis and opinion mining[EB/OL].[2018-01-16].https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.html.
[2]LIU Bing.Web data mining[M].Berlin,Germany:Springer,2011.
[3]PANG Bo,LEE L.Thumbs up? sentiment classification using machine learning[EB/OL].[2018-01-16].https://arxiv.org/pdf/cs/0205070.pdf.
[4]BLITZER J,MCDONALD R,PEREIRA F.Domain adaptation with structural correspondence learning[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.Stroudsburg,USA:Association for Computational Linguistics,2006:120-128.
[5]PAN Jialin,NI Xiaochuan,SUN Jiantao,et al.Cross-domain sentiment classification via spectral feature alignment[C]//Proceedings of the 19th International Conference on World Wide Web.New York,USA:ACM Press,2010:751-760.
[6]ZHANG Shaowu,LIU Huali,YANG Liang,et al.A cross-domain sentiment classification method based on extraction of key sentiment sentence[J].Natural Language Processing and Chinese Computing,2015,9362:90-101.
[7]孟佳娜,段晓东,杨亮.基于特征变换的跨领域产品评论倾向性分析[J].计算机工程,2013,39(10):167-171.
[8]BOLLEGALA D,WEIR D,CARROLL J.Cross-domain sentiment classification using a sentiment sensitive thesaurus[J].IEEE Transactions on Knowledge and Data Engineering,2013,25(8):1719-1731.
[9]XIA Rui,ZONG Chengqing,HU Xuelei,et al.Feature ensemble plus sample selection:domain adaptation for sentiment classification[J].IEEE Intelligent Systems,2013,28(3):10-18.
[10]ZHOU Guangyou,HE Tingting,WU Wensheng,et al.Linking heterogeneous input features with pivots for domain adaptation[C]//Proceedings of the 24th International Conference on Artificial Intelligence.[S.l.]:AAAI Press,2015:1419-1425.
[11]魏晓聪,林鸿飞.面向迁移学习的文本特征对齐算法[J].计算机工程,2017,43(2):215-219.
[12]ZHANG Yuhong,XU Xu,HU Xuegang.A common subspace construction method in cross-domain sentiment classification[C]//Proceedings of International Conference on Electronic Science and Automation Control.[S.l.]:Atlantis Press,2015:48-52.
[13]ZHOU Guangyou,ZHOU Yin,GUO Xiyue,et al.Cross-domain sentiment classification via topical correspondence transfer[J].Neurocomputing,2015,159:298-305.
[14]GLOROT X,BORDES A,BENGIO Y.Domain adapta-tion for large-scale sentiment classification:a deep learning approach[C]//Proceedings of the 28th International Conference on Machine Learning.[S.l.]:Omnipress,2011:513-520.
[15]BENGIO Y,GUYON G,DROR V,et al.Deep learning of representations for unsupervised and transfer learning[EB/OL].[2018-01-16].https://www.docin.com/p-1690924284.html.
[16]COLLOBERT R,WESTON J.A unified architecture for natural language processing:deep neural networks with multitask learning[C]//Proceedings of the 25th Inter-national Conference on Machine learning.New York,USA:ACM Press,2008:160-167.
[17]MARQUEZ L,RODRGUEZ H.Part-of-speech tagging using decision trees[C]//Proceedings of the 10th European Conference on Machine Learning.London,UK:Springer,1998:25-36.
[18]LANDAUER T K,DUMAIS S T.A solution to plato’s problem:the latent semantic analysis theory of acquisition,induction,and representation of knowledge[J].Psychological Review,1997,104(2):211-240.
[19]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL].[2018-01-16].https://arxiv.org/pdf/1301.3781.pdf.
[20]PENNINGTON J,SOCHER R,MANNING C.GloVe:global vectors for word representation[EB/OL].[2018-01-16].https://nlp.stanford.edu/projects/glove/.
[21]MILLER G A.WordNet:a lexical database for English[J].Communications of the Association for Computing Machinery,1995,38(11):39-41. |