[1] FAYYAD U M,PIATETSKY-SHAPIRO G,SMYTH P,et al.Advances in knowledge discovery and data mining[M].[S.1.]:AAAI/MIT Press,1996. [2] KUNAR K M,REDDY A R M.An efficient k-means clustering filtering algorithm using density based initial cluster centers[J].Information Sciences,2017,411-419:286-301. [3] HAN J,KAMBER M,PEI J,et al.Data mining:concepts and technology[M].3rd ed.Translated by FAN Ming,MENG Xiaofeng.Beijing:Mechanical Industry Press,2012.(in Chinese) HAN J,KAMBER M,PEI J,et al.数据挖掘:概念与技术[M].3版.范明,孟小峰,译.北京:机械工业出版社,2012. [4] SALEHI M,RASHIDI L.A Survey on anomaly detection in evolving data[J].SIGKDD Explorations,2018,20(1):13-23. [5] LLOYD S P.Least Squares Quantization in PCM[J].IEEE Transactions on Information Theory,1982,28(2):129-136. [6] JAIN A K.Data clustering:50 years beyond k-means,pattern recognition letters[EB/OL].[2019-07-20].http://dx.doi.org/10.1016/j.patrec.2009.09.011. [7] BU Yuanyuan,GUAN Zhongren.Research of clustering algorithm based on k-means[J].Journal of Southwest University for Nationalities(Natural Science Edition),2009,35(1):198-200.(in Chinese)步媛媛,关忠仁.基于k-means聚类算法的研究[J].西南民族大学学报(自然科学版),2009,35(1):198-200. [8] WANG Jun,WANG Shitong,DENG Zhaohong.A novel text clustering algorithm based on feature weighting distance and soft subspace learning[J].Chinese Journal of Computers,2012,35(8):1655-1665.(in Chinese)王骏,王士同,邓赵红.特征加权距离与软子空间学习相结合的文本聚类新方法[J].计算机学报,2012,35(8):1655-1665. [9] ZHANG Jianpei,YANG Yu,YANG Jing,et al.Algorithm for initialization of K-Means clustering center based on optimized-division[J].Journal of System Simulation,2009,21(9):2586-2590.(in Chinese)张健沛,杨悦,杨静.基于最优划分的K-Means初始聚类中心选取算法[J].系统仿真学报,2009,21(9):2586-2590. [10] ALSABTI K,RANKA S,SINGLY V.An efficient k-means clustering algorithm[C]//Proceedings of the 1st Workshop on High Performance Data Mining.Washington D.C.,USA:IEEE Press,1998:35-43. [11] BECKMANN N,KRIEGEL H P,SCHNEIDER R,et al.The r-tree:an efficient and robust access method for points and rectangles[C]//Proceedings of ACMSIGMOD International Conference on Management of Data.Washington D.C.,USA:IEEE Press,1990:322-331. [12] BERCHTOLD S,KEIM D,KRIEGEL H P.The x-tree:an efficient and robust access method for points and rectangles[C]//Proceedings of International Conference on Very Large Data Bases.Washington D.C.,USA:IEEE Press,1996:28-39. [13] XIE Juanying,GAO Hongchao.Statistical correlation and K-Means based distinguishable gene subset selection algorithms[J].Journal of Software,2014,25(9):2050-2075.(in Chinese)谢娟英,高红超.基于统计相关性与K-means的区分基因子集选择算法[J].软件学报,2014,25(9):2050-2075. [14] SOROOSH A,STEPHEN M S,THOMAS E N.Effective degrees of freedom of the Pearson's correlation coefficient under autocorrelation[J].NeuroImage,2019,199:609-625. [15] HUANG J Z,XU J,NG M,et al.Weighting method for feature selection in k-means[C]//Proceedings of Computational Methods of Feature Selection.[S.1.]:CRC Press,2008:193-209. [16] CHAN Y,CHING W K,NG M K,et al.An optimization algorithm for clustering using weighted dissimilarity measures[J].Pattern Recognition,2004,37(5):943-952. [17] HUANG J Z,NG M K,RONG H,et al.Automated variable weighting in K-Means type clustering[J].IEEE Transactions on Pattern Analysis and Machine Learning,2005,27(5):657-668. [18] MAKARENKOV V,LEGENDRE P.Optimal variable weighting for ultrametric and additive trees and K-Means partitioning[J].Journal of Classification,2001,18:245-271. [19] DE AMORIM R C,MIRKIN B,METRIC M.Feature weighting and anomalous cluster initializing in K-Means clustering[J].Parttern Recognition,2012,45:1061-1075. [20] AN Jingmin,LI Guanyu.Domain concept clustering method based on graph entropy extreme value theory[J].Computer Engineering,2020,46(6):88-93.(in Chinese)安敬民,李冠宇.基于图熵极值化理论的领域概念聚类方法[J].计算机工程,2020,46(6):88-93. [21] ESTER M,KRIEGEL H,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.[S.1.]:AAAI Press,1996:226-231. [22] ANKERST M,BREUNIG M,KRIEGEL H P.OPTICS:ordering points to identify the clustering structure[C]//Proceedings of International Conference on Management of Data.Philadelphia,USA:[s.n.],1999:49-60. [23] RODRIGUEZ A,LAIO A.Clustering by fast search and find of density peaks[J].Science,2014,344(6191):1492-1496. [24] ZHANG Geng,ZHANG Chengchang,ZHANG Huayu.Improved K-Means algorithm based on density canopy[J].Knowledge-Based Systems,2018,145:289-297. |