[1] 陈曙东, 欧阳小叶.命名实体识别技术综述[J].无线电通信技术, 2020, 46(3):251-260. CHEN S D, OUYANG X Y.Overview of named entity recognition technology[J].Radio Communications Technology, 2020, 46(3):251-260.(in Chinese) [2] XIE R B, LIU Z Y, JIA J, et al.Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the 13th AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2016:31-37. [3] MCCALLUM A, FREITAG D, PEREIRA F C.Maximum entropy Markov models for information extraction and segmentation[EB/OL].[2021-04-08].http://www.doczj.com/doc/ba02ef20482fb4daa58d4b5e.html. [4] LAFFERTY J D, MCCALLUM A, PEREIRA F C N.Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning.New York, USA:ACM Press, 2001:282-289. [5] COLLOBERT R, WESTON J, BOTTOU L, et al.Natural language processing(almost) from scratch[J].Journal of Machine Learning Research, 2011, 12:2493-2537. [6] CHIU J P C, NICHOLS E.Named entity recognition with bidirectional LSTM-CNNs[J].Transactions of the Association for Computational Linguistics, 2016, 4:357-370. [7] MA X Z, HOVY E.End-to-end sequence labeling via Bi-directional LSTM-CNNs-CRF[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2016:1064-1074. [8] MIKOLOV T, CHEN K, CORRADO G, et al.Efficient estimation of word representations in vector space[EB/OL].[2021-04-08].https://arxiv.org/abs/1301.3781. [9] PETERS M, NEUMANN M, IYYER M, et al.Deep contextualized word representations[C]//Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg, USA:Association for Computational Linguistics, 2018:2227-2237. [10] DEVLIN J, CHANG M W, LEE K, et al.BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg, USA:Association for Computational Linguistics, 2019:4171-4186. [11] LAN Z Z, CHEN M D, GOODMAN S, et al.ALBERT:a lite BERT for self-supervised learning of language representations[EB/OL].[2021-04-08].https://arxiv.org/abs/1909.11942. [12] 刘玉娇, 琚生根, 李若晨, 等.基于深度学习的中文微博命名实体识别[J].四川大学学报(工程科学版), 2016, 48(S2):142-146. LIU Y J, JU S G, LI R C, et al.Named entity recognition in Chinese micro-blog based on deep learning[J].Journal of Sichuan University(Engineering Science Edition), 2016, 48(S2):142-146.(in Chinese) [13] 张海楠, 伍大勇, 刘悦, 等.基于深度神经网络的中文命名实体识别[J].中文信息学报, 2017, 31(4):28-35. ZHANG H N, WU D Y, LIU Y, et al.Chinese named entity recognition based on deep neural network[J].Journal of Chinese Information Processing, 2017, 31(4):28-35.(in Chinese) [14] 李雁群, 何云琪, 钱龙华, 等.基于维基百科的中文嵌套命名实体识别语料库自动构建[J].计算机工程, 2018, 44(11):76-82. LI Y Q, HE Y Q, QIAN L H, et al.Automatic construction of Chinese nested named entity recognition corpus based on Wikipedia[J].Computer Engineering, 2018, 44(11):76-82.(in Chinese) [15] JIA Y Z, XU X B.Chinese named entity recognition based on CNN-BiLSTM-CRF[C]//Proceedings of the 9th International Conference on Software Engineering and Service Science.Washington D.C., USA:IEEE Press, 2018:1-4. [16] ZHANG Y, YANG J.Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2018:1-10. [17] 王蕾, 谢云, 周俊生, 等.基于神经网络的片段级中文命名实体识别[J].中文信息学报, 2018, 32(3):84-90, 100. WANG L, XIE Y, ZHOU J S, et al.Segment-level Chinese named entity recognition based on neural network[J].Journal of Chinese Information Processing, 2018, 32(3):84-90, 100.(in Chinese) [18] 石春丹, 秦岭.基于BGRU-CRF的中文命名实体识别方法[J].计算机科学, 2019, 46(9):237-242. SHI C D, QIN L.Chinese named entity recognition method based on BGRU-CRF[J].Computer Science, 2019, 46(9):237-242.(in Chinese) [19] 赵丰, 黄健, 张中杰.LAC-DGLU:基于CNN和注意力机制的命名实体识别模型[J].计算机科学, 2020, 47(11):212-219. ZHAO F, HUANG J, ZHANG Z J.LAC-DGLU:named entity recognition model based on CNN and attention mechanism[J].Computer Science, 2020, 47(11):212-219.(in Chinese) [20] 李妮, 关焕梅, 杨飘, 等.基于BERT-IDCNN-CRF的中文命名实体识别方法[J].山东大学学报(理学版), 2020, 55(1):102-109. LI N, GUAN H M, YANG P, et al.BERT-IDCNN-CRF for named entity recognition in Chinese[J].Journal of Shandong University (Natural Science), 2020, 55(1):102-109.(in Chinese) [21] LEVOW G.The third international Chinese language processing bakeoff:word segmentation and named entity recognition[C]//Proceedings of the 15th SIGHAN Workshop on Chinese Language Processing.Berlin, Germany:Springer, 2006:108-117. [22] 罗凌, 杨志豪, 宋雅文, 等.基于笔画ELMo和多任务学习的中文电子病历命名实体识别研究[J].计算机学报, 2020, 43(10):1943-1957. LUO L, YANG Z H, SONG Y W, et al.Chinese clinical named entity recognition based on stroke ELMo and multi-task learning[J].Chinese Journal of Computers, 2020, 43(10):1943-1957.(in Chinese) [23] 李韧, 李童, 杨建喜, 等.基于Transformer-BiLSTM-CRF的桥梁检测领域命名实体识别[J].中文信息学报, 2021, 35(4):83-91. LI R, LI T, YANG J X, et al.Bridge inspection named entity recognition based on Transformer-BiLSTM-CRF[J].Journal of Chinese Information Processing, 2021, 35(4):83-91.(in Chinese) |