[1] HUANG G B,CHEN L,SIEW C K.Universal approximation using incremental constructive feedforward networks with random hidden nodes[J].IEEE Transactions on Neural Networks,2006,17(4):879-892. [2] HUANG Guangbin,ZHOU Hongming,DING Xiaojian,et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems,Man,and Cybernetics Part B:Cybernetics,2012,42(2):513-529. [3] ZONG Weiwei,HUANG Guangbin,CHEN Yiqiang.Weighted extreme learning machine for imbalance learning[J].Neurocomputing,2013,101:229-242. [4] LIANG N Y,HUANG G B,SARATCHANDRAN P,et al.A fast and accurate online sequential learning algorithm for feedforward networks[J].IEEE Transactions on Neural Networks,2006,17(6):1411-1423. [5] LAN Y,HU Z J,SOH Y J,et al.An extreme learning machine approach for speaker recognition[J].Neural Computing and Applications,2013,22(3/4):417-425. [6] XU Yan,DAI Yuanyu,DONG Zhaoyang,et al.Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems[J].Neural Computing and Applications,2013,22(3/4):501-508. [7] HUANG G B,SIEW C K.Extreme learning machine:RBF network case[C]//Proceedings of the 8th IEEE Control,Automation,Robotics and Vision Conference.Washington D.C.,USA:IEEE Press,2004:1029-1036. [8] LAN Y,SOH Y C,HUANG G B.Ensemble of online sequential extreme learning machine[J].Neurocomputing,2009,72(13):3391-3395. [9] HUANG Guangbin,LIANG Nanying,RONG Haijun,et al.On-line sequential extreme learning machine[C]//Proceedings of IASTED'05.Calgary,Canada:[s.n.],2005:125-132. [10] HUANG Guangbin,CHEN Lei.Convex incremental extreme learning machine[J].Neurocomputing,2007,70(16):3056-3062. [11] HUANG Guangbin,CHEN Lei.Enhanced random search based incremental extreme learning machine[J].Neurocomputing,2008,71(16):3460-3468. [12] DU Zhanlong,LI Xiaomin,XI Leiping,et al.Improved sensitivity-analysis based pruning extreme learning machine[J].Control and Decision,2016,31(2):249-255.(in Chinese)杜占龙,李小民,席雷平,等.改进的灵敏度剪枝极限学习机[J].控制与决策,2016,31(2):249-255. [13] ZAI Huawei,CUI Licheng,ZHANG Weishi.Novel online adaptive algorithm of extreme learning machine based on improved sensitivity analysis[J].Journal of Chinese Computer Systems,2019,40(7):1386-1390.(in Chinese)翟华伟,崔立成,张维石.一种改进灵敏度分析的在线自适应极限学习机算法[J].小型微型计算机系统,2019,40(7):1386-1390. [14] FENG Guorui,HUANG Guangbin,LIN Qingbing,et al.Error minimized extreme learning machine with growth of hidden nodes and incremental learning[J].IEEE Transactions on Neural Networks,2009,20(8):1352-1357. [15] HUANG Qingbao,JIANG Chenglong,LIN Xiaofeng,et al.Optimization of extreme learning machine network based on harmony search algorithm[J].Journal of Guangxi University(Natural Science Edition),2018,43(2):517-524.(in Chinese)黄清宝,蒋成龙,林小峰,等.基于和声搜索算法的极限学习机网络优化[J].广西大学学报(自然科学版),2018,43(2):517-524. [16] DENG Wanyu,ZHANG Shasha,LIU Guangda,et al.Extreme learning machine with selected hidden neurons[J].Information Technology,2018,42(8):1-3,7.(in Chinese)邓万宇,张莎莎,刘光达,等.极限学习机中隐含层节点选择研究[J].信息技术,2018,42(8):1-3,7. [17] PAN Huaiqi,BI Yingzhou,PAN Yonghua.Optimal extreme learning machine based on particle swarm optimization algorithm[J].Journal of Guangxi Teachers Education University(Natural Science Edition),2018,35(4):49-53.(in Chinese)潘怀奇,闭应洲,潘永华.基于粒子群优化算法的最优极限学习机[J].广西师范学院学报(自然科学版),2018,35(4):49-53. [18] RONG H J,ONG Y S,TAN A Z,et al.A fast pruned-extreme learning machine for classification problem[J].Neurocomputing,2008,72(1):359-366. [19] DING Wangbin,WEI Shaohan,ZHANG Bixian.A online extreme learning machine node pruning method based on EFAST[J].Journal of Sanming University,2018,35(4):55-59.(in Chinese)丁王斌,魏少涵,张碧仙.基于EFAST的在线极限学习机节点剪枝方法[J].三明学院学报,2018,35(4):55-59. [20] XU Zhezhuang,HUANG Yanwei,LAI Dahu.Optimization for hidden nodes number of ELM based on approximate structure risk[J].Computer Engineering,2014,40(9):215-219,224.(in Chinese)徐哲壮,黄宴委,赖大虎.基于近似结构风险的ELM隐层节点数优化[J].计算机工程,2014,40(9):215-219,224. |