[1] LI Duanchao,WANG Song,HUANG Taigui,et al.Key technologies of line loss and stealing electricity prediction analysis based on big data platform[J].Power System Protection and Control,2018,46(5):143-151.(in Chinese)李端超,王松,黄太贵,等.基于大数据平台的电网线损与窃电预警分析关键技术[J].电力系统保护与控制,2018,46(5):143-151. [2] BHATTARAI B P,PAUDYAL S,LUO Y,et al.Big data analytics in smart grids:state-of-the-art,challenges,opportunities,and future directions[J].IET Smart Grid,2019,2(2):141-154. [3] WU Kehe,ZHU Yayun,LI Haoyang,et al.Real-time predication framework for power grid time-series data based on storm[J].Computer Engineering,2017,43(4):8-14.(in Chinese)吴克河,朱亚运,李皓阳,等.基于Storm的电网时间序列数据实时预测框架[J].计算机工程,2017,43(4):8-14. [4] HOSSAIN E,KHAN I,UN-NOOR F,et al.Application of big data and machine learning in smart grid,and associated security concerns:a review[J].IEEE Access,2019,7:13960-13988. [5] XU Xinyi,HE Xing,AI Qian,et al.A correlation analysis method for power systems based on random matrix theory[J].IEEE Transactions on Smart Grid,2017,8(4):1811-1820. [6] LIU Wei,ZHANG Dongxia,DING Yucheng,et al.Power grid vulnerability identification methods based on random matrix theory and entropy theory[J].Proceedings of the Chinese Society for Electrical Engineering,2017,37(20):5893-5901.(in Chinese)刘威,张东霞,丁玉成,等.基于随机矩阵理论与熵理论的电网薄弱环节辨识方法[J].中国电机工程学报,2017,37(20):5893-5901. [7] HE X,QIU R C,CHU L,et al.Invisible units detection and estimation based on random matrix theory[EB\\OL].[2019-09-10].https://arxiv.org/abs/1710.10745?context=stat.AP. [8] HAN Song,ZHOU Zhongqiang,LI Hongqian.Spiked population model based abnormal state detection of power system in low SNR environment[C]//Proceedings of 2018 International Conference on Power System Technology.Guangzhou,China:[s.n.],2018:125-136. [9] ZHOU Zhongqiang,HAN Song.MESCM based abnormal state detection of power system in low SNR environment[J].Power System Protection and Control,2019,47(8):113-119.(in Chinese)周忠强,韩松.基于样本协方差矩阵最大特征值的低信噪比环境电网异常状态检测[J].电力系统保护与控制,2019,47(8):113-119. [10] LI Hongqian,HAN Song,ZHOU Zhongqiang.Efficient abnormal load identification in large-scale power system employing Rayleigh quotient and parallel computing technology[J].Power System Protection and Control,2019,47(23):37-43.(in Chinese)李洪乾,韩松,周忠强.利用Rayleigh熵和并行计算的大规模电网异常负荷快速识别[J].电力系统保护与控制,2019,47(23):37-43. [11] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet cassification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,23:1097-1105. [12] LIN Junhao,ZHANG Yan,ZHAO Teng,et al.Structure strength assessment method of distribution network based on improved convolution neural network and network topology feature mining[J].Proceedings of the Chinese Society for Electrical Engineering,2019,39(1):84-96.(in Chinese)林君豪,张焰,赵腾,等.基于改进卷积神经网络拓扑特征挖掘的配电网结构坚强性评估方法[J].中国电机工程学报,2019,39(1):84-96. [13] ZHANG Chongyuan,YUE Haotian,WANG Boyun,et al.Pattern recognition of partial discharge ultrasonic signal based on similar matrix BSS and deep learning CNN[J].Power System Technology,2019,43(6):1900-1906.(in Chinese)张重远,岳浩天,王博闻,等.基于相似矩阵盲源分离与卷积神经网络的局部放电超声信号深度学习模式识别方法[J].电网技术,2019,43(6):1900-1906. [14] LIU Wei,ZHANG Dongxia,WANG Xinying,et al.A decision making strategy for generating unit ttripping under emergency circumstances based on deep reinforcement learning[J].Proceedings of the Chinese Society for Electrical Engineering,2018,38(1):109-119.(in Chinese)刘威,张东霞,王新迎,等.基于深度强化学习的电网紧急控制策略研究[J].中国电机工程学报,2018,38(1):109-119. [15] JU Yun,SUN Guangyu,CHEN Quanhe,et al.A model combining convolutional neural network and light GBM algorithm for ultra-short-term wind power forecasting[J].IEEE Access,2019,7:28309-28318. [16] O'ROURKE S.A note on the Marchenko-Pastur law for a class of random matrices with dependent entries[J].Electronic Communications in Probability,2012,17:18-26. [17] LI Wenting,WANG Meng.Identifying overlapping successive events using a shallow convolutional neural network[EB/OL].[2019-09-10].https://www.researchgate.net/publication. [18] TANG Conglan,LU Jiping,XIE Yingzhao,et al.Improved data stream on-line segmentation based ultra short-term load forecasting[J].Power System Technology2014,38(7):2014-2020.(in Chinese)唐聪岚,卢继平,谢应昭,等.基于改进数据流在线分割的超短期负荷预测[J].电网技术,2014,38(7):2014-2020. [19] KIM J,MOON J,HWANG E,et al.Recurrent inception convolution neural network for multi short-term load forecasting[J].Energy and Buildings,2019,194:328-341. [20] WANG Lei,ZHANG Ruiqing,SHENG Wei,et al.Regression forecast and abnormal data detection based on support vector regression[J].Proceedings of the Chinese Society for Electrical Engineering,2009,29(8):92-96.(in Chinese)王雷,张瑞青,盛伟,等.基于支持向量机的回归预测和异常数据检测[J].中国电机工程学报,2009,29(8):92-96. [21] RONG Na,LI Zetao,HAN Song.Improved relative-locality index of electromechanical oscillation mode and its adaptability[J].Electric Power Automation Equipment,2017,37(2):140-144.(in Chinese)荣娜,李泽滔,韩松.改进的机电振荡模式相对局域性指标及其适应性[J].电力自动化设备,2017,37(2):140-144. [22] ZHAO Hui.Simulation of typical daily load curve by spline interpolation[J].Power System Technology,1998,22(5):41-43.(in Chinese)赵晖.用样条插值法模拟典型日负荷曲线[J].电网技术,1998,22(5):41-43. |