[1] ITU.IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond[EB/OL].[2019-12-30].https://standards.globalspec.com/std/9964221/itu-r-m-2083. [2] LOPEZ P D,DING M,CLAUSSEN H,et al.Towards 1 Gbps/UE in cellular systems:understanding ultra-dense small cell deployments[J].IEEE Communications Surveys and Tutorials,2015,17(4):2078-2101. [3] YE Junliang,GE Xiaohu,MAO Guoqiang,et al.5G ultradense networks with nonuniform distributed users[J].IEEE Transactions on Vehicular Technology,2018,67(3):2660-2670. [4] BAI Lu,LIU Tingting,YANG Chenyang.Interference coordination method and performance analysis under ultra-dense networks[J].Journal of Signal Processing,2015,31(10):1263-1271. [5] CHEN Shanzhi,QIN Fei,HU Bo,et al.User-centric ultra-dense networks for 5G:challenges,methodologies,and directions[J].IEEE Wireless Communications,2016,23(2):78-85. [6] ZHANG Hongtao,MENG Na,LIU Yang,et al.Performance evaluation for local anchor-based dual connectivity in 5G user-centric network[J].IEEE Access,2016,4(9):5721-5729. [7] BUZZI S,ANDREA D C,ZAPPONE A,et al.User-centric 5G cellular networks:resource allocation and comparison with the cell-free massive MIMO approach[J].IEEE Transactions on Wireless Communications,2020,19(2):1250-1264. [8] HAMNAH M,SYED A H,HARIS P,et al.A game theoretical network-assisted user-centric design for resource allocation in 5G heterogeneous networks[C]//Proceedings of 2016 IEEE Vehicular Technology Conference.Washington D.C.,USA:IEEE Press,2016:256-261. [9] CHEN Ying,ZHANG Hongtao.Outage probability and average rate analysis of user-centric ultra-dense networks[EB/OL].[2019-12-30].https://ieeexplore.ieee.org/document/8761977. [10] LI Hao,SUN Changyin,LIANG Yanxia.User clustering algorithm for user-centric and multi-dimensional collaborative in ultra-dense networks[J].Video Engineering,2018,42(3):50-57. [11] CHEN Zhonglin.Research on the key technologies of user centered ultra dense network security[D].Beijing:Beijing University of Posts and Telecommunications,2019.(in Chinese)陈中林.以用户为中心的超密集网络安全关键技术研究[D].北京:北京邮电大学,2019. [12] ZHANG Hongtao,YANG Zihua,LIU Yang,et al.Power control for 5G user-centric network:performance analysis and design insight[J].IEEE Access,2016,4(10):7347-7355. [13] LUO Ronghua,YANG Zhen.Distributed power allocation algorithm based on Stackelberg game in cognitive radio[J].Journal of Electronics and Information Technology,2010,32(12):2964-2969.(in Chinese)罗荣华,杨震.认知无线电中基于Stackelberg博弈的分布式功率分配算法[J].电子与信息学报,2010,32(12):2964-2969. [14] ZHU Jiang,YANG Haolei,HAN Chao.A game based adaptive power control algorithm in cognitive wireless networks[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2014,26(4):439-444.(in Chinese)朱江,杨浩磊,韩超.认知无线网络中一种基于博弈的自适应功率控制算法[J].重庆邮电大学学报(自然科学版),2014,26(4):439-444. [15] YU Hui,GAO Lin,LI Zheng,et al.Pricing for uplink power control in cognitive radio networks[J].IEEE Transaction on Vehicular Technology,2010,59(4):1769-1778. [16] KOSKIE S,GAJIC Z.A Nash game algorithm for SIR-based power control in 3G wireless CDMA networks[J].ACM Transactions on Networking,2005,13(5):1017-1026. [17] WANG Zeng,HU Bo,WANG Xin,et al.Interference pricing in 5G ultra-dense small cell networks:a Stackelberg game approach[J].IET Communications,2016,10(15):1865-1872. [18] CHEN Hao,LI Rongfeng,ZHOU Bilei,et al.FDA optimal frequency increment selection method based on weighted modules[J].Modern Radar,2019,41(1):30-35.(in Chinese)陈浩,李荣锋,周必雷,等.基于加权模值的FDA最优频率间隔选取方法[J].现代雷达,2019,41(1):30-35. [19] TALABANI A A,NALLANATHAN A,NGUYEN H X.Anovel chaos based cost function for power control of cognitive radio networks[J].IEEE Communications Letters,2015,19(4):657-660. [20] XIAO Nanhua,LIANG Jun,LIU Yipei,et al.Power control based on non-cooperative game for cognitive radio networks[J].Journal of Huazhong University of Science and Technology(Nature Science Edition),2016,44(1):112-117. |