[1] KAMEL M,HAMOUDA W,YOUSSEF A.Ultra-dense networks:a survey[J].IEEE Communications Surveys & Tutorials,2016,18(4):2522-2545. [2] NAM W,BAI D,LEE J,et al.Advanced interference management for 5G cellular networks[J].IEEE Communications Magazine,2014,52(5):52-60. [3] REN Qi,FAN Jiancun,LUO Xinmin,et al.Analysis of spectral and energy efficiency in ultra-dense network[C]//Proceedings of 2015 IEEE International Conference on Communication Workshop.Washington D.C.,USA:IEEE Press,2015:2812-2817. [4] AN Lu,ZHANG Tiankui,FENG Chunyan.Stochastic geometry based energy-efficient base station density optimization in cellular networks[C]//Proceedings of 2015 IEEE Wireless Communications and Networking Conference.Washington D.C.,USA:IEEE Press,2015:1614-1619. [5] SAMARAKOON S,BENNIS M,SAAD W,et al.Energy-efficient resource management in ultra dense small cell networks:a mean-field approach[C]//Proceedings of 2015 IEEE Global Communications Conference.Washington D.C.,USA:IEEE Press,2015:1-6. [6] LIANG Liang,WANG Wen,JIA Yunjian,et al.A cluster-based energy-efficient resource management scheme for ultra-dense networks[J].IEEE Access,2016,4:6823-6832. [7] WU Shie,ZENG Zhimin,XIA Hailun.Load-aware energy efficiency optimization in dense small cell networks[J].IEEE Communications Letters,2016,21(2):366-369. [8] COSKUN C C,AYANOGLU E.Energy-spectral efficiency tradeoff for heterogeneous networks with QoS constraints[C]//Proceedings of 2017 IEEE International Conference on Communications.Washington D.C.,USA:IEEE Press,2017:1-7. [9] GAO Yang,CHEN Shifu,LU Xin.Research on reinforcement learning technology:a review[J].Acta Automatica Sinica,2004,30(1):86-100.(in Chinese)高阳,陈世福,陆鑫.强化学习研究综述[J].自动化学报,2004,30(1):86-100. [10] SIMSEK M,BENNIS M,CZYLWIK A.Dynamic inter-cell interference coordination in HetNets:a reinforcement learning approach[C]//Proceedings of 2012 IEEE Global Communications Conference.Washington D.C.,USA:IEEE Press,2012:5446-5450. [11] ZHAO Nan,LIANG Yingchang,PEI Yiyang.Dynamic contract incentive mechanism for cooperative wireless networks[J].IEEE Transactions on Vehicular Technology,2018,67(11):10970-10982. [12] AMIRI R,MEHRPOUYAN H,FRIDMAN L,et al.A machine learning approach for power allocation in HetNets considering QoS[C]//Proceedings of 2018 IEEE International Conference on Communications.Washington D.C.,USA:IEEE Press,2018:1-7. [13] LIU Quan,ZHAI Jianwei,ZHANG Zongchang,et al.A survey on deep reinforcement learning[J].Chinese Journal of Computers,2018,41(1):1-27.(in Chinese)刘全,翟建伟,章宗长,等.深度强化学习综述[J].计算机学报,2018,41(1):1-27. [14] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444. [15] ZHANG Yong,KANG Canping,MA Tengteng,et al.Power allocation in multi-cell networks using deep reinforcement learning[C]//Proceedings of the 88th Vehicular Technology Conference.Washington D.C.,USA:IEEE Press,2018:1-6. [16] LI Han,GAO Hui,LÜ Tiejun,et al.Deep Q-learning based dynamic resource allocation for self-powered ultra-dense networks[C]//Proceedings of 2018 IEEE International Conference on Communications Workshops.Washington D.C.,USA:IEEE Press,2018:1-6. [17] LIU Zhiyong,CHEN Xin,CHEN Ying,et al.Deep reinforcement learning based dynamic resource allocation in 5G ultra-dense networks[C]//Proceedings of 2019 IEEE International Conference on Smart Internet of Things.Washington D.C.,USA:IEEE Press,2019:168-174. [18] HAN F,SAFAR Z,LIU K J R.Energy-efficient base-station cooperative operation with guaranteed QoS[J].IEEE Transactions on Communications,2013,61(8):3505-3517. [19] LEE G,SAAD W,BENNIS M,et al.Online ski rental for scheduling self-powered,energy harvesting small base stations[C]//Proceedings of 2016 IEEE International Conference on Communication.Washington D.C.,USA:IEEE Press,2016:1-6. [20] WATKINS C J C H,DAYAN P.Q-learning[J].Machine Learning,1992,8(3/4):279-292. |