[1] 彭鑫.车载自组网节点定位及频谱分配策略研究[D].长沙:湖南大学, 2011. PENG X.Research on vehicle localization and spectrum allocation strategy in VANETs[D].Changsha:Hunan University, 2011.(in Chinese) [2] 井骁.浅析车联网技术与应用[J].上海汽车, 2019(4):9-12. JING X.Analysis of vehicle Internet technology and application[J].Shanghai Auto, 2019(4):9-12.(in Chinese) [3] 廖晓闽, 严少虎, 石嘉, 等.基于深度强化学习的蜂窝网资源分配算法[J].通信学报, 2019, 40(2):11-18. LIAO X M, YAN S H, SHI J, et al.Deep reinforcement learning based resource allocation algorithm in cellular networks[J].Journal on Communications, 2019, 40(2):11-18.(in Chinese) [4] 孙智乐, 李德敏, 陶冰, 等.一种多接口多信道VANET动态频谱分配算法研究[J].电子技术应用, 2015, 41(3):90-92, 96. SUN Z L, LI D M, TAO B, et al.Research of dynamic spectrum allocation algorithm for multi-radio multi-channel VANET[J].Application of Electronic Technique, 2015, 41(3):90-92, 96.(in Chinese) [5] 薛玲玲, 樊秀梅.基于分簇结构的车联网认知频谱分配机制[J].计算机科学, 2019, 46(9):143-149. XUE L L, FAN X M.Cognitive spectrum allocation mechanism in Internet of vehicles based on clustering structure[J].Computer Science, 2019, 46(9):143-149.(in Chinese) [6] SUN W L, STRÖM E G, BRÄNNSTRÖM F, et al.Radio resource management for D2D-based V2V communication[J].IEEE Transactions on Vehicular Technology, 2016, 65(8):6636-6650. [7] SUN W L, YUAN D, STRÖM E G, et al.Cluster-based radio resource management for D2D-supported safety-critical V2X communications[J].IEEE Transactions on Wireless Communications, 2016, 15(4):2756-2769. [8] SALAHUDDIN M A, AL-FUQAHA A, GUIZANI M.Reinforcement learning for resource provisioning in the vehicular cloud[J].IEEE Wireless Communications, 2016, 23(4):128-135. [9] HE Y, ZHAO N, YIN H X.Integrated networking, caching, and computing for connected vehicles:a deep reinforcement learning approach[J].IEEE Transactions on Vehicular Technology, 2018, 67(1):44-55. [10] CHEN M M, CHEN J J, CHEN X J, et al.A deep learning based resource allocation scheme in vehicular communication systems[C]//Proceedings of 2019 IEEE Wireless Communications and Networking Conference.Washington D.C., USA:IEEE Press, 2019:1-7. [11] LIANG L, YE H, LI G Y.Spectrum sharing in vehicular networks based on multi-agent reinforcement learning[J].IEEE Journal on Selected Areas in Communications, 2019, 37(10):2282-2292. [12] ZHANG H B, WANG Z X, LIU K J.V2X offloading and resource allocation in SDN-assisted MEC-based vehicular networks[J].China Communications, 2020, 17(5):266-283. [13] XU Y H, YANG C C, HUA M, et al.Deep Deterministic Policy Gradient(DDPG)-based resource allocation scheme for NOMA vehicular communications[J].IEEE Access, 2020, 8:18797-18807. [14] NGUYEN K K, DUONG T Q, VIEN N A, et al.Distributed deep deterministic policy gradient for power allocation control in D2D-based V2V communications[J].IEEE Access, 2019, 7:164533-164543. [15] XIONG Z H, ZHANG Y, NIYATO D, et al.Deep reinforcement learning for mobile 5G and beyond:fundamentals, applications, and challenges[J].IEEE Vehicular Technology Magazine, 2019, 14(2):44-52. [16] HAARNOJA T, ZHOU A, ABBEEL P, et al.Soft actor-critic:off-policy maximum entropy deep reinforcement learning with a stochastic actor[EB/OL].[2020-07-04].https://arxiv.org/abs/1801.01290. [17] SUTTON R S, BARTO A G.Reinforcement learning:an introduction[M].Cambridge, USA:MIT Press, 2017. [18] ODDI G, PANFILI M, PIETRABISSA A, et al.A resource allocation algorithm of multi-cloud resources based on Markov decision process[C]//Proceedings of the 5th International Conference on Cloud Computing Technology and Science.Washington D.C., USA:IEEE Press, 2013:130-135. [19] CHRISTODOULOU P.Soft actor-critic for discrete action settings[EB/OL].[2020-07-04].https://arxiv.org/abs/1910.07207v2. [20] HAARNOJA T, ZHOU A, HARTIKAINEN K, et al.Soft actor-critic algorithms and applications[EB/OL].[2020-07-04].https://arxiv.org/abs/1812.05905. [21] 3rd Generation Partnership Project.Technical specification group radio access network[EB/OL].[2020-07-04].http://www.doc88.com/p-9082561797139.html. |