[1] AGRAWAL R, SRIKANT R.Fast algorithm for mining association rules[C]//Proceedings of the 20th International Conference on Very Large Data Bases.New York, USA:ACM Press, 1994:487-499. [2] 贺玲, 蔡益朝, 杨征.高维数据聚类方法综述[J].计算机应用研究, 2020, 27(1):23-31. HE L, CAI Y Z, YANG Z, et al.Summary of clustering methods for high-dimensional data[J].Application Research of Computers, 2020, 27(1):23-31.(in Chinese) [3] KAUR M, SINGH D.Multi-objective Bayesian optimization and joint inversion for active sensor fusion[EB/OL].[2020-11-08].https://arxiv.org/abs/2010.05386. [4] WANG Z R, WANG H M.Research on mining maximum frequent itemset based on JFP-Growth algorithm[C]//Proceedings of the 2nd International Conference on Mechanical, Electronic and Engineering Technology.Hong Kong, China:[s.n], 2019:1-10. [5] LI Z.Implementation of classification and recognition algorithm for text information based on support vector machine[J].International Journal of Pattern Recognition and Article Intelligence, 2020, 34(8):1-16. [6] SAMADI Y, ZBAKH M, TADONKI C.Graph-based model and algorithm for minimizing big data movement in a cloud environment[J].International Journal of High performance Computing and Networking, 2018, 12(2):148-155. [7] 米据生, 陈锦坤.基于图的粗糙集属性约简方法[J]. 西北大学学报, 2019, 49(4):508-516. MI J S, CHEN J K.Graph-based approaches for attribute reduction in rough set[J].Journal of Northwest University, 2019, 49(4):508-516.(in Chinese) [8] 冀素琴, 石洪波, 吕亚丽, 等.基于粒化-融合的海量高维数据特征选择算法[J].模式识别与人工智能, 2016, 29(7):590-597. JI S Q, SHI H B, LV Y L, et al.Feature selection algorithm for massive high-dimensional data based on granulation-fusion[J].Pattern Recognition and Artificial Intelligence, 2016, 29(7):590-597.(in Chinese) [9] 盛魁, 董辉, 马健, 等.基于邻域粗糙集组合度量的混合数据属性约简算法[J].计算机应用与软件, 2020, 37(2):234-239. SHENG K, DONG H, MA J, et al.Quick reduction algorithm for high-dimensional sets based on neighborhood rough set model[J].Computer Applications and Software, 2020, 37(2):234-239.(in Chinese) [10] 史进玲, 张倩倩, 徐久成.多粒度决策系统属性约简的最优粒度选择[J].计算机科学, 2018, 45(2):152-156. SHI J L, ZHANG Q Q, XU J C.Optimal granularity selection of attribute reductions in multi-granularity decision system[J].Computer Science, 2018, 45(2):152-156.(in Chinese) [11] 陈帅, 张贤勇, 唐玲玉, 等.邻域互补信息度量及其启发式属性约简[J].数据采集与处理, 2020, 35(4):630-641. CHEN S, ZHANG X Y, TANG L Y, et al.Neighborhood complementary information measurement and its heuristic attribute reduction[J].Journal of Data Acquisition & Processing, 2020, 35(4):630-641.(in Chinese) [12] VANAHALLI M K, PATIL N.Distributed load balancing frequent colossal closed itemset mining algorithm for high dimensional dataset[J].Journal of Parallel and Distributed Computing, 2020, 144:136-152. [13] 王潜平, 徐琴, 王珂, 等.一种基于负载平衡树的多网关节点数据汇集路由算法[J].软件学报, 2010, 21:330-340. WANG Q P, XU Q, WANG K, et al.Multi-gateway nodes data collected routing algorithm based on load balancing tree[J].Journal of Software, 2010, 21:330-340.(in Chinese) [14] 杨挺, 王萌, 张亚健, 等.云计算数据中心HDFS差异性存储节能优化算法[J].计算机学报, 2019, 42(4):47-61. YANG T, WANG M, ZHANG Y J, et al.Cloud computing data center HDFS differential storage energy saving optimization algorithm[J].Chinese Journal of Computers, 2019, 42(4):47-61.(in Chinese) [15] 朱颢东, 薛校博, 李红婵.海量数据下基于Hadoop的分布式FP-Growth算法[J].轻工学报, 2018, 33(5):36-45. ZHU H D, XUE X B, LI H C.Distributed FP-growth algorithm based on Hadoop under massive data[J].Journal of Light Industry, 2018, 33(5):36-45.(in Chinese) [16] 高权, 万晓冬.基于负载均衡的并行FP-Growth算法[J].计算机工程, 2019, 45(3):32-40. GAO Q, WAN X D.Parallel FP-growth algorithm based on load balancing and redundancy pruning[J].Computer Engineering, 2019, 45(3):32-40.(in Chinese) [17] LIAO J G, ZHAO Y L, LONG S Q.MRPrePost:a parallel algorithm adapted for mining big data[C]//Proceedings of IEEE Workshop on Electronics, Computer and Applications.Washington D. C., USA:IEEE Press, 2014:1-10. [18] 蒋东洁, 李玲娟.基于单向频繁模式树的频繁项集挖掘算法[J].计算机技术与发展, 2019, 29(10):175-180. JIANG D J, LI L J.Frequent itemset mining algorithm based on UFP-tree[J].Computer Technology and Development, 2019, 29(10):175-180.(in Chinese) [19] RAJ S, RAMESH D, SREENU M, et al.EAFIM:efficient apriori-based frequent itemset mining algorithm on spark for big transactional data[J].Knowledge and Information Systems, 2020, 8(7):1168-1187. [20] 王泽儒.基于频繁项集挖掘的2FP-Forest算法及其并行化处理研究[D].长春:长春工业大学, 2019. WANG Z R.Research on 2FP-Forest algorithm based on frequent itemset mining and its parallel processing[D]. Changchun:Changchun University of Technology, 2019. (in Chinese) [21] NGUYEN T, NGUYEN L T T, VO B, et al.An N-list-based approach for mining frequent inter-transaction patterns[J].Special Section on Data Internet of Things, 2020, 8(3):116840-116855. [22] HUYNH V Q P, KUENG J.FPO tree and DP3 algorithm for distributed parallel frequent itemset mining[J].Expert Systems with Applications, 2020, 140(2):112874. [23] 肖文, 胡娟, 周晓峰.PFPonCanTree:一种基于MapReduce的并行频繁模式增量挖掘算法[J].计算机工程与科学, 2018, 40(1):15-23. XIAO W, HU J, ZHOU X F.PFPonCanTree:a parallel frequent pattern incremental mining algorithm based on MapReduce[J].Computer Engineering and Science, 2018, 40(1):15-23.(in Chinese) [24] 张自力, 秦其明, 董开发.基于ArcSDE的空间数据库设计与实现[J].微计算机信息, 2007, 23(11):133-135. ZHANG Z L, QIN Q M, DONG K F.The design and implementation of spatial database based on ArcSDE[J]. Microcomputer Information, 2007, 23(11):133-135.(in Chinese) [25] 张学飞, 刘锡淼, 姚薇薇.一种基于空间数据库的移动网络运营支撑系统[J].电信快报, 2020(3):42-45. ZHANG X F, LIU X M, YAO W W.A mobile network operation support system based on spatial database[J]. Telecommunications Information, 2020(3):42-45.(in Chinese) [26] WANG Z R, WANG H M.Research on mining maximum frequent itemset based on JFP-Growth algorithm[J]. Electronic and Engineering Technology, 2019:32-40. [27] GUO N, FANG Y, TIAN Z, et al.Research on SOC fuzzy weighted algorithm based on GA-BP neural network and ampere integral method[J].The Journal of Engineering, 2019, 46(4):576-580. [28] 陈曼如, 童向荣, 张楠.基于多尺度粒化的高效正域属性约简算法研究[D].烟台:烟台大学, 2019. CHEN M R, TONG X R, ZHANG N.Research on efficient positive domain attribute reduction algorithm based on multi-scale granulation[D].Yantai:YanTai University, 2019.(in Chinese) [29] 冯兴杰, 潘轩.基于Spark的投影树频繁项集挖掘算法[J]. 计算机工程与设计, 2018, 39(8):2477-2483. FENG X J, PAN X.Projection tree association rule mining algorithm based on Spark[J].Computer Engineering and Design, 2018, 39(8):2477-2483.(in Chinese) |