作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (7): 196-203. doi: 10.19678/j.issn.1000-3428.0064914

• 图形图像处理 • 上一篇    下一篇

RRA-InceptionV3结合鲁棒稀疏表示的表情识别方法

谢虹, 姜文刚   

  1. 江苏科技大学 电子信息学院, 江苏 镇江 212003
  • 收稿日期:2022-06-07 出版日期:2023-07-15 发布日期:2023-07-14
  • 作者简介:

    作者简介:谢虹(1998—),女,硕士研究生,主研方向为计算机视觉、人脸识别

    姜文刚,教授、博士

  • 基金资助:
    国家自然科学基金青年科学基金项目(61903162); 江苏省研究生创新计划(KYCX21_3482)

RRA-InceptionV3 Combined Robust Sparse Representation Method for Expression Recognition

Hong XIE, Wengang JIANG   

  1. College of Electronic Information, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
  • Received:2022-06-07 Online:2023-07-15 Published:2023-07-14

摘要:

针对现实场景中人脸局部遮挡导致的表情识别准确度较低的问题,提出一种RRA-InceptionV3结合鲁棒稀疏表示的表情识别方法。将人脸图像通过多支路卷积运算和空洞卷积模块来获取丰富的表情特征,基于Asm-CBAM卷积注意力机制划分人脸表情特征的权重并进行多特征融合,随后堆叠密集残差模块,从多通道中自适应提取人脸特征信息,通过Asm-CBAM卷积注意力机制提高网络对人脸关键特征的注意力。在此基础上,利用鲁棒稀疏表示分类器方法对表情进行分类。在人脸数据集FER2013和CK+上的实验结果表明,该方法的人脸表情平均识别精度分别达到79.86%和98.74%,与OAD Net算法相比,分别高出7.50和3.14个百分点,能够高效提取人脸表情特征。此外,在人脸被遮挡的情况下具有较强的鲁棒性,有效提高了在人脸遮挡情况下表情识别的准确度。

关键词: 表情识别, 局部遮挡, 鲁棒稀疏表示分类器方法, 密集残差, Asm-CBAM模块, 空洞卷积

Abstract:

Facial expression recognition technology is an important subject in the field of computer vision.However, in real application, partial occlusion can lead to a sharp drop in the accuracy of facial expression recognition.In view of the low accuracy of facial expression recognition caused by partial occlusion of faces in real scenes, an RRA-InceptionV3 combined robust sparse representation method for expression recognition is proposed.First, the facial image is obtained through a multi-branch convolution operation and atrous convolution module to obtain rich expression features.the Asm-CBAM convolution attention mechanism then divides the weight of facial expression features.Multi-feature fusion and then stacking of dense residual blocks are used to adaptively extract face feature information from multiple channels.In addition, the Asm-CBAM convolutional attention mechanism is used again to improve the network's attention to key facial features.Finally, a Robust Sparse Representation Classifier(RSRC) method is used to classify expressions.The experimental results on face data sets FER2013 and CK+ show that the average recognition accuracy of the proposed method reaches 79.86% and 98.74%, respectively, which is 7.50 and 3.14 percentage points higher than that of the OAD Net algorithm, and can efficiently extract facial expression features.Moreover, it has strong robustness in the case of face occlusion, effectively improving the accuracy of expression recognition.

Key words: expression recognition, partial occlusion, Robust Sparse Representation Classifier(RSRC) method, dense residuals, Asm-CBAM module, atrous convolution