[1] WANG X.A survey of online advertising click-through rate prediction models[C]//Proceeding of IEEE International Conference on Information Technology, Big Data and Artificial Intelligence.Washington D.C., USA:IEEE Press, 2020:516-521. [2] JIANG Z, GAO S, DAI W.A CTR prediction approach for text advertising based on the SAE-LR deep neural network[J].Journal of Information Processing Systems, 2017, 13(5):1052-1070. [3] CHANG Y W, HSIEH C J, CHANG K W, et al.Training and testing low-degree polynomial data mappings via linear SVM[J].Journal of Machine Learning Research, 2010, 11(11):1471-1490. [4] HOFFMANN F, HOSSEINI B, REN Z, et al.Consistency of semi-supervised learning algorithms on graphs:probit and one-hot methods[J].Journal of Machine Learning Research, 2020, 21(186):1-55. [5] RENDLE S.Factorization machines with libfm[J].ACM Transactions on Intelligent Systems and Technology, 2012, 3(3):1-22. [6] JUAN Y, ZHUANG Y, CHIN W S, et al.Field-aware factorization machines for CTR prediction[C]//Proceedings of the 10th ACM Conference on Recommender Systems.New York, USA:ACM Press, 2016:43-50. [7] XIAO J, YE H, HE X, et al.Attentional factorization machines:learning the weight of feature interactions via attention networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.New York, USA:ACM Press, 2017:3119-3125. [8] HE X, PAN J, JIN O, et al.Practical lessons from predicting clicks on ads at facebook[C]//Proceedings of the 8th International Workshop on Data Mining for Online Advertising.New York, USA:ACM Press, 2014:1-9. [9] TIAN Y, YANG G, WANG Z, et al.Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J].Computers and Electronics in Agriculture, 2019, 157:417-426. [10] YANG J, WANG M, ZHOU H, et al.Towards making the most of bert in neural machine translation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2020, 34(5):9378-9385. [11] SU J, VARGAS D V, SAKURAI K.One pixel attack for fooling deep neural networks[J].IEEE Transactions on Evolutionary Computation, 2019, 23(5):828-841. [12] ZHANG W, DU T, WANG J.Deep learning over multi-field categorical data[C]//Proceedings of European Conference on Information Retrieval.Berlin, Germany:Springer, 2016:45-57. [13] QU Y, CAI H, REN K, et al.Product-based neural networks for user response prediction[C]//Proceedigns of the 16th International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2016:1149-1154. [14] CHENG H T, KOC L, HARMSEN J, et al.Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.New York, USA:ACM Press, 2016:7-10. [15] GUO H F, TANG R M, YE Y M, et al.DeepFM:a factorization-machine based neural network for CTR prediction[C]//Proceedings of the International Joint Conference on Artificial Intelligence.New York, USA:ACM Press, 2017:1-7. [16] HUANG T, SHE Q, WANG Z, et al.GateNet:gating-enhanced deep network for click-through rate prediction[EB/OL].[2020-10-15].https://arxiv.org/abs/2007.03519v1. [17] LI F, WANG B, LU S, et al.Comparison of the sigmoid take-off with other definitions of the rectosigmoid junction:a retrospective comparative cohort analysis[J].International Journal of Surgery, 2020, 80:168-174. [18] DIAKONIKOLAS I, KANE D M, KONTONIS V, et al.Algorithms and sq lower bounds for pac learning one-hidden-layer relu networks[EB/OL].[2020-10-12].https://arxiv.org/abs/2006.12476v1. [19] HUANG T, ZHANG Z, ZHANG J.FiBiNET:combining feature importance and bilinear feature interaction for click-through rate prediction[C]//Proceedings of the 13th ACM Conference on Recommender Systems.New York, USA:ACM Press, 2019:169-177. [20] DENG W, PAN J, ZHOU T, et al.DeepLight:deep lightweight feature interactions for accelerating CTR predictions in ad serving[EB/OL].[2020-10-14].https://arxiv.org/abs/2002.06987. [21] RADZEVIČIENĖ A, MARQUET P, MASLAUSKIENĖ R, et al.Analyses of AUC (0-12) and C0 compliances within therapeutic ranges in kidney recipients receiving cyclosporine or tacrolimus[J].Journal of Clinical Medicine, 2020, 9(12):3903-3925. [22] VOVK V.The fundamental nature of the LogLoss function[M].Berlin, Germany:Springer, 2015:307-318. [23] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2017:5998-6008. [24] 许王昊, 肖秦琨.基于注意力机制的兴趣网络的点击率预估模型[J].计算机工程, 2021, 47(1):101-108. XU W H, XIAO Q K.A click-through rate prediction model based on attentional interest network[J].Computer Engineering, 2021, 47(1):101-108.(in Chinese) [25] 邓路佳, 刘平山.基于GMM-FMs的广告点击率预测研究[J].计算机工程, 2019, 45(5):122-126. DENG L J, LIU P S.Research on click-through rate prediction of advertisement based on GMM-FMs[J].Computer Engineering, 2019, 45(5):122-126.(in Chinese) [26] LI Z, CUI Z, WU S, et al.Fi-GNN:modeling feature interactions via graph neural networks for ctr prediction[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York, USA:ACM Press, 2019:539-548. [27] SONG W, SHI C, XIAO Z, et al.Autoint:automatic feature interaction learning via self-attentive neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York, USA:ACM Press, 2019:1161-1170. [28] RAFFEL C, SHAZEER N, ROBERTS A, et al.Exploring the limits of transfer learning with a unified text-to-text transformer[J].Journal of Machine Learning Research, 2020, 21(140):1-67. [29] LU Y, FANG Y, SHI C.Meta-learning on heterogeneous information networks for cold-start recommendation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2020:1563-1573. [30] DELDJOO Y, DACREMA M F, CONSTANTIN M G, et al.Movie genome:alleviating new item cold start in movie recommendation[J].User Modeling and User-Adapted Interaction, 2019, 29(2):291-343. |