[1] ZHOU Y C, XU W.Angler exploit kit continues to evade detection:over 90, 000 websites compromised[EB/OL].(2016-01-11)[2021-11-15].https://unit42.paloaltonetworks.com/angler-exploit-kit-continues-to-evade-detection-over-90000-websites-compromised. [2] PAGANINI P.ERMAC, a new banking Trojan that borrows the code from Cerberus malware[EB/OL].(2021-09-28)[2021-11-15].https://securityaffairs.co/wordpress/122657/malware/ermac-banking-trojan.html. [3] O'NEILL P H.2021 has broken the record for zero-day hacking attacks[EB/OL].(2021-09-23)[2021-11-15].https://www.technologyreview.com/2021/09/23/1036140/2021-record-zero-day-hacks-reasons. [4] THOTTAN M, LIU G L, JI C Y.Anomaly detection app-roaches for communication networks[M]//CORMODE G, THOTTAN M.Algorithms for next generation networks.Berlin, Germany:Springer, 2010:239-261. [5] CHANDOLA V, BANERJEE A, KUMAR V.Anomaly detection:a survey[J].ACM Computing Surveys, 2009, 41(3):1-58. [6] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2021-11-15].https://arxiv.org/abs/2004.10934. [7] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[EB/OL].(2017-06-12)[2021-11-15].https://arxiv.org/abs/1706.03762. [8] AGARAP A F M.A neural network architecture combining Gated Recurrent Unit(GRU) and Support Vector Machine(SVM) for intrusion detection in network traffic data[C]//Proceedings of the 10th International Conference on Machine Learning and Computing.New York, USA:ACM Press, 2018:26-30. [9] SONG J, TAKAKURA H, OKABE Y.Description of Kyoto University benchmark data[EB/OL].(2016-03-15)[2021-11-15].http://www.takakura.com/Kyoto_data/BenchmarkData-Description-v5.pdf. [10] 侯爱华, 高伟, 汪霖.基于逻辑回归模型的流量异常检测方法研究[J].工程数学学报, 2017, 34(5):479-489. HOU A H, GAO W, WANG L.Research on traffic anomaly detection method based on the logistic regression model[J].Chinese Journal of Engineering Mathematics, 2017, 34(5):479-489.(in Chinese) [11] WANG W, ZHU M, ZENG X W, et al.Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of International Conference on Information Networking.Washington D.C., USA:IEEE Press, 2017:712-717. [12] WANG W, ZHU M, WANG J L, et al.End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]//Proceedings of IEEE International Conference on Intelligence and Security Informatics.Washington D.C., USA:IEEE Press, 2017:43-48. [13] YU Y, LONG J, CAI Z P.Network intrusion detection through stacking dilated convolutional autoencoders[J].Security and Communication Networks, 2017, 2017:1-10. [14] RADFORD B J, APOLONIO L M, TRIAS A J, et al.Network traffic anomaly detection using recurrent neural networks[EB/OL].(2018-05-28)[2021-11-15].https://arxiv.org/abs/1803.10769. [15] CLAISE B, TRAMMELL B, AITKEN P.Specification of the IP Flow Information Export(IPFIX) protocol for the exchange of flow information-2013[S].RFC 7011, Internet Engineering Task Force, 2013:2070-1721. [16] KWON D, NATARAJAN K, SUH S C, et al.An empirical study on network anomaly detection using convolutional neural networks[C]//Proceedings of the 38th International Conference on Distributed Computing Systems.Washington D.C., USA:IEEE Press, 2018:1595-1598. [17] MA C C, DU X H, CAO L F.Analysis of multi-types of flow features based on hybrid neural network for improving network anomaly detection[J].IEEE Access, 2019, 7:148363-148380. [18] 杭梦鑫, 陈伟, 张仁杰.基于改进的一维卷积神经网络的异常流量检测[J].计算机应用, 2021, 41(2):433-440. HANG M X, CHEN W, ZHANG R J.Abnormal flow detection based on improved one-dimensional convolutional neural network[J].Journal of Computer Applications, 2021, 41(2):433-440.(in Chinese) [19] GAO M H, MA L, LIU H, et al.Malicious network traffic detection based on deep neural networks and association analysis[J].Sensors(Basel, Switzerland), 2020, 20(5):1452. [20] INGRE B, YADAV A.Performance analysis of NSL-KDD dataset using ANN[C]//Proceedings of International Conference on Signal Processing and Communication Engineering Systems.Washington D.C., USA:IEEE Press, 2015:92-96. [21] LI Z, ZHENG Q, KAI H, et al.Intrusion detection using convolutional neural networks for representation learning[C]//Proceedings of International Conference on Neural Information Processing.Berlin, Germany:Springer, 2017:858-866. [22] ALTWAIJRY N, ALQAHTANI A, ALTURAIKI I.A deep learning approach for anomaly-based network intrusion detection[C]//Proceedings of International Conference on Big Data and Security.Berlin, Germany:Springer, 2019:603-615. [23] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [24] KINGAD A J B.A method for stochastic optimization[C]//Proceedings of International Conference on Learning Representations.San Diego, USA:[s.n.], 2015:1-10. [25] TAVALLAEE M, BAGHERI E, LU W, et al.A detailed analysis of the KDD CUP 99 data set[C]//Proceedings of IEEE Symposium on Computational Intelligence for Security and Defense Applications.Washington D.C., USA:IEEE Press, 2009:1-6. [26] IOFFE S, SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of International Conference on Machine Learning.Guangzhou, China:[s.n.], 2015:448-456. [27] GLOROT X, BORDES A, BENGIO Y.Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics.Ft.Lauderdale, USA:[s.n.], 2011:315-323. [28] CHANSONG D, SUPRATID S.Impacts of kernel size on different resized images in object recognition based on convolutional neural network[C]//Proceedings of the 9th International Electrical Engineering Congress.Washington D.C., USA:IEEE Press, 2021:448-451. [29] YOU K C, LONG M S, WANG J M, et al.How does learning rate decay help modern neural networks?[EB/OL].(2019-09-26).[2021-11-15].https://arxiv.org/abs/1908.01878. |