1 |
姜妍, 张立国. 面向深度学习模型的对抗攻击与防御方法综述. 计算机工程, 2021, 47(1): 1- 11.
doi: 10.3969/j.issn.1007-130X.2021.01.001
|
|
JIANG Y, ZHANG L G. Survey of adversarial attacks and defense methods for deep learning model. Computer Engineering, 2021, 47(1): 1- 11.
doi: 10.3969/j.issn.1007-130X.2021.01.001
|
2 |
白祉旭, 王衡军. 基于改进遗传算法的对抗样本生成方法. 计算机工程, 2023, 49(5): 139- 149.
URL
|
|
BAI Z X, WANG H J. Adversarial example generation method based on improved genetic algorithm. Computer Engineering, 2023, 49(5): 139- 149.
URL
|
3 |
|
4 |
DONG Y P, SU H, WU B Y, et al. Efficient decision-based black-box adversarial attacks on face recognition[EB/OL]. [2023-02-05]. https://arxiv.org/abs/1904.04433.
|
5 |
|
6 |
MA X J, NUI Y H, GU L, et al. Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognition, 2021, 110, 107332.
doi: 10.1016/j.patcog.2020.107332
|
7 |
|
8 |
|
9 |
CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//Proceedings of 2017 IEEE Symposium on Security and Privacy. Washington D. C., USA: IEEE Press, 2017: 39-57.
|
10 |
|
11 |
JANDIAL S, MANGLA P, VARSHNEY S, et al. AdvGAN++: harnessing latent layers for adversary generation[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop. Washington D. C., USA: IEEE Press, 2019: 2045-2048.
|
12 |
BAI T, ZHAO J, ZHU J L, et al. AI-GAN: attack-inspired generation of adversarial examples[C]//Proceedings of 2021 IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2021: 2543-2547.
|
13 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
14 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks. Communications of the ACM, 2020, 63(11): 139- 144.
doi: 10.1145/3422622
|
15 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2012: 1097-1105.
|
16 |
|
17 |
ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient Transformer for high-resolution image restoration[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 5718-5729.
|
18 |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600- 612.
doi: 10.1109/TIP.2003.819861
|
19 |
|
20 |
|
21 |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278- 2324.
doi: 10.1109/5.726791
|
22 |
|
23 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 248-255.
|
24 |
|
25 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
26 |
|