[1] LIAO Jun,ZHOU Zhongliang,KOU Yingxin,et al.Method for time series segment based on important point[J].Computer Engineering and Applications,2011,47(24):166-170.(in Chinese)廖俊,周中良,寇英信,等.一种基于重要点的时间序列分割方法[J].计算机工程与应用,2011,47(24):166-170. [2] JIANG Yixian,ZHANG Qishan.Time series segmentation algorithm based on important point and grey GM(1,1) model[J].Statistics and Decision,2016(24):28-30.(in Chinese)江艺羡,张岐山.基于重要点与灰色GM(1,1)模型的时间序列分段算法[J].统计与决策,2016(24):28-30. [3] WANG Lizhu,LIU Xiaodong.Time-series segmentation based on fuzzy clustering algorithm and information granules[J].Fuzzy Systems and Mathematics,2015,29(1):175-182.(in Chinese)王立柱,刘晓东.基于信息颗粒和模糊聚类的时间序列分割[J].模糊系统与数学,2015,29(1):175-182. [4] BAO Jiayong,ZHAO Yuexu.Sea surface temperature time series segmentation based on Floyd algorithm[J].Application of Statistics and Management,2019,38(8):326-333.(in Chinese)鲍家勇,赵月旭.基于Floyd算法的海温时间序列分割[J].数理统计与管理,2019,38(8):326-333. [5] KEOGH E,CHU S,HART D,et al.An online algorithm for segmenting time series[C]//Proceedings of IEEE International Conference on Data Mining.Washington D.C.,USA:IEEE Press,2001:289-296. [6] WANG Peng,WANG Haixun,WANG Wei.Finding semantics in time series[C]//Proceedings of ACM SIGMOD International Conference on Management of Data.New York,USA:ACM Press,2011:385-396. [7] FORNEY G D.The Viterbi algorithm[J].Proceedings of the IEEE,1973,61(3):268-278. [8] MATSUBARA Y,SAKURAI Y,FALOUTSOS C.AutoPlait:automatic mining of co-evolving time sequences[C]//Proceedings of CVPR'14.New York,USA:ACM Press,2014:193-204. [9] GHARGHABI S,DING Y,YEH C C M,et al.Matrix profile VIII:domain agnostic online semantic segmentation at superhuman performance levels[C]//Proceedings of IEEE International Conference on Data Mining.Washington D.C.,USA:IEEE Press,2017:117-126. [10] YEH C C M,ZHU Y,ULANOVA L,et al.Matrix profile I:all pairs similarity joins for time series:a unifying view that includes motifs,discords and shapelets[C]//Proceedings of International Conference on Data Mining.Washington D.C.,USA:IEEE Press,2016:1-5. [11] DING H,TRAJCEVSKI G,SCHEUERMANN P,et al.Querying and mining of time series data:experimental comparison of representations and distance measures[J].Proceedings of the VLDB Endowment,2008,1(2):1542-1552. [12] XI X,KEOGH E,SHELTON C,et al.Fast time series classification using numerosity reduction[C]//Proceedings of IEEE International Conference on Machine Learning.Washington D.C.,USA:IEEE Press,2006:1-40. [13] SAKOE H,CHIBA S.Dynamic programming algorithm optimization for spoken word recognition[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1978,26(1):43-49. [14] NGUYEN T,SEVERIN G G I.Time series classification by sequence learning in all-subsequence space[C]//Proceedings of the 33rd International Conference on Data Engineering.Washington D.C.,USA:IEEE Press,2017:1-10. [15] SENIN P,MALINCHIK S.SAX-VSM:interpretable time series classification using sax and vector space model[C]//Proceedings of International Conference on Data Mining.Washington D.C.,USA:IEEE Press,2013:1-10. [16] LIN J,KEOGH E,WEI L,et al.Experiencing SAX:a novel symbolic representation of time series[J].Data Mining and Knowledge Discovery,2007,15:107-144. [17] CHEN Qiuxia,CHEN Lei,LIAN Xiang,et al.Indexable PLA for efficient similarity search[C]//Proceedings of the 33rd International Conference on Very Large Data Bases.New,York,USA:ACM Press,2007:435-446. [18] REISS A,STRICKER D.Towards global aerobic activity monitoring[C]//Proceedings of PETRA'11.New York,USA:ACM Press,2011:1-8. [19] REISS A,WEBER M,STRICKER D.Exploring and extending the boundaries of physical activity recognition[C]//Proceedings of IEEE International Conference on Systems.Washington D.C.,USA:IEEE Press,2011:1-10. [20] MATEI Z,CHOWDHURY M,FRANKLIN M J,et al.Spark:cluster computing with working sets[C]//Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing.Boston,USA:USENIX,2010:10-11. |